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An Overview of the
Bayesian Approach

In this chapter we shall introduce the core issues of Bayesian reasoning: these

include subjectivity and context, the use of Bayes theorem, Bayes factors,

interpretation of study results, prior distributions, predictions, decision-making,

multiplicity, using historical data, and computation. This overview necessarily

covers a wide range of material and ideas at an introductory level, and the

issues will be further developed in subsequent chapters. A structure for

reporting Bayesian analyses is proposed, which will provide a uniform style

for the examples presented in this book. A number of starred sections can be

omitted without loss of continuity.

3.1 SUBJECTIVITY AND CONTEXT

The standard interpretation of probability describes long-run properties of

repeated random events (Section 2.1.1). This is known as the frequency interpret-

ation of probability, and standard statistical methods are sometimes referred to as

‘frequentist’. In contrast, the Bayesian approach rests on an essentially ‘subject-

ive’ interpretation of probability, which is allowed to express generic uncertainty

or ‘degree of belief’ about any unknown but potentially observable quantity,

whether or not it is one of a number of repeatable experiments. For example, it is

quite reasonable from a subjective perspective to think of a probability of the

event ‘Earth will be openly visited by aliens in the next ten years’, whereas it may

be difficult to interpret this potential event as part of a ‘long-run’ series. Methods

of assessing subjective probabilities and probability distributions will be discussed

in Section 5.2.

The rules of probability listed in Section 2.1.1 are generally taken as self-

evident, based on comparison with simple chance situations such as rolling

dice or drawing coloured balls out of urns. In these experiments there will be a
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general consensus about the probabilities due to assumptions about physical

symmetries: if a balanced coin is to be tossed, the probability of it coming up

‘heads’ will usually be assigned 0.5, whether this is taken as a subjective belief

about the next toss or whether the next toss is thought of as part of a long series of

tosses. However, as Lindley (2000) emphasises, the rules of probability do not

need to be assumed as self-evident, but can be derived from ‘deeper’ axioms of

reasonable behaviour of an individual (say, You) in the face of Your own uncer-

tainty. This ‘reasonable behaviour’ features characteristics such as Your unwill-

ingness to make a series of bets based on expressed probabilities, such that You

are bound to lose (a so-called ‘Dutch book’), or Your unwillingness to state prob-

abilities that can always be improved upon in terms of their expected accuracy in

predicting events. It is perhaps remarkable that from such conditions one can

prove the three basic rules of probability (Lindley, 1985): as a simple example, if I

state probabilities of 0.7 that it will rain tomorrow, and 0.4 that it will not rain,

and I amwilling to bet at these odds, then a good bookmaker can accept a series of

bets fromme such that I am bound to lose. (For example, assuming small stakes, I

would consider it a good deal to bet 14 units of money for a return of 21 if it

rained, since my expected profit is 0:7� 21� 14 ¼ 0:7, and simultaneously I

would bet 8 units ofmoney for a return of 21 if it did not rain. Thus the bookmaker

is certain tomake a profit of 1 unit whatever happens.) Such probabilities are said

not to ‘cohere’, and are assumed to be avoided by all rational individuals.

The vital point of the subjective interpretation is that Your probability for an

event is a property of Your relationship to that event, and not an objective

property of the event itself. This is why, pedantically speaking, one should

always refer to probabilities for events rather than probabilities of events, and

the conditioning context H used in Section 2.1.1 includes the observer and all

their background knowledge and assumptions. The fact that the probability is a

reflection of personal uncertainty rather than necessarily being based on future

unknown events is illustrated (from personal experience) by a gambling game

played in casinos in Macau. Two dice are thrown out of sight of the gamblers

and immediately covered up: the participants then bet on different possible

combinations. Thus, they are betting on an event that has already occurred,

but about which they are personally ignorant. (Incidentally, their beliefs also do

not appear to be governed by the assumed physical symmetries of the dice:

although they have 2 minutes to bet, everyone remains totally still for at least

90 seconds, and then when the first bet is laid the crowd follow in a rush,

apparently believing in the good fortune of the one confident individual.)

The subjective view of probability is not new, and in past epochs has been the

standard ideology. Fienberg (1992) points out that Jakob Bernoulli in 1713

introduced ‘the subjective notion that the probability is personal and varies with

an individual’s knowledge’, and that Laplace and Gauss both worked with

posterior distributions two hundred years ago, which became known as ‘the

inverse method’. However, from the mid-nineteenth century the frequency

approach started to dominate, and controversy has sporadically continued.
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Dempster (1998) quotes Edgeworth in 1884 as saying that the critics who

‘heaped ridicule upon Bayes’ theorem and the inverse method’ were trying to

elicit ‘knowledge out of ignorance, something out of nothing’. Polemical opin-

ions are still expressed in defence of the explicit introduction of subjective

judgement into scientific research: ‘it simply makes no sense to take seriously

every apparent falsification of a plausible theory, any more than it makes sense

to take seriously every new scientific idea’ (Matthews, 1998).

Bayesian methods therefore explicitly allow for the possibility that the con-

clusions of an analysis may depend on who is conducting it and their available

evidence and opinion, and therefore the context of the study is vital: ‘Bayesian

statistics treats subjectivity with respect by placing it in the open and under the

control of the consumer of data’ (Berger and Berry, 1988). Apart from meth-

odological researchers, at least five different viewpoints might be identified for

an evaluation of a health-care intervention:

. sponsors, e.g. the pharmaceutical industry, medical charities or granting

agencies;

. investigators, i.e. those responsible for the conduct of a study, whether indus-

try or publicly funded;

. reviewers, e.g. regulatory bodies;

. policy makers, e.g. agencies setting health policy;

. consumers, e.g. individual patients or clinicians acting on their behalf.

Each of these broad categories can be further subdivided. An analysis which

might be carried out solely for the investigators, for example, may not be

appropriate for presentation to reviewers or consumers: ‘experimentalists tend

to draw a sharp distinction between providing their opinions and assessments

for the purposes of experimental design and in-house discussion, and having

them incorporated into any form of externally disseminated report’ (Racine et al.,

1996). The roles of these different stakeholders in decision-making is further

explored in Chapter 9.

A characteristic of health-care evaluation is that the investigators who plan

and conduct a study are generally not the same body as those who make deci-

sions on the basis of the evidence provided in part by that study: such decision-

makers may be regulatory authorities, policy-makers or health-care providers.

This division is acknowledged in this book by separating Chapter 6 on the

design and monitoring of trials from Chapter 9 on policy-making.

3.2 BAYES THEOREM FOR TWO HYPOTHESES

In Section 2.1.3 Bayes theorem was derived as a basic result in probability

theory. We now begin to illustrate its use as a mechanism for learning about

unknown quantities from data, a process which is sometimes known as ‘prior to
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posterior’ analysis. We start with the simplest possible situation. Consider two

hypotheses H0 and H1 which are ‘mutually exhaustive and exclusive’, i.e. one

and only one is true. Let the prior probability for each of the two hypotheses,

before we have access to the evidence of interest, be p(H0) and p(H1); for the

moment we will not concern ourselves with the source of those probabilities.

Suppose we have observed some data y, such as the results of a test, and we

know from past experience that the probability of observing y under each of the

two hypotheses is p(yjH0) and p(yjH1), respectively: these are the likelihoods, with

the vertical bar representing ‘conditioning’.

Bayes theorem shows how to revise our prior probabilities in the light of the

evidence in order to produce posterior probabilities. Specifically, by adapting (2.3)

we have the identity

p(H0jy) ¼
p(yjH0)

p(y)
� p(H0), (3:1)

where p(y) ¼ p(yjH0)p(H0)þ p(yjH1)p(H1) is the overall probability of y

occurring.

Now H1 ¼ ‘not H0’ and so p(H0) ¼ 1� p(H1) and p(H0jy) ¼ 1� p(H1jy). In
terms of odds rather than probabilities, Bayes theorem can then be re-expressed

(see (2.5) ) as

p(H0jy)
p(H1jy)

¼ p(yjH0)

p(yjH1)
� p(H0)

p(H1)
: (3:2)

Now p(H0)=p(H1) is the ‘prior odds’, p(H0jy)=p(H1jy) is the ‘posterior odds’, and

p(yjH0)=p(yjH1) is the ratio of the likelihoods, and so (3.2) can be expressed as

posterior odds ¼ likelihood ratio� prior odds:

By taking logarithms we also note that

log (posterior odds) ¼ log (likelihood ratio)þ log (prior odds):

where the log(likelihood ratio) has also been termed the ‘weight of evidence’:

this term was invented by Alan Turing when using these techniques for

breaking the Enigma codes at Bletchley Park during the Second World War.

Example 3.1 shows how this formulation is commonly used in the evaluation

of diagnostic tests, and reveals that our intuition is often poor when processing

probabilistic evidence, and that we tend to forget the importance of the prior

probability (Section 5.2).

Example 3.1 Diagnosis: Bayes theoremindiagnostic testing

Suppose a new home HIV test is claimed to have ‘95% sensitivity and 98%
specificity’, and is to be used in a population with an HIV prevalence of
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1/1000. We can calculate the expected status of 100 000 individuals who
are tested, and the results are shown in Table 3.1. Thus, for example, we
expect 100 truly HIV positive individuals of whom 95% will test positive,
and of the remaining 99 900 HIV negative individuals we expect 2% (1998)
to test positive. Thus of the 2093 who test positive (i.e. have observation y),
only 95 are truly HIV positive, giving a ‘predictive value positive’ of only
95=2093 ¼ 4:5%.

Table 3.1 Expected status of 100 000 tested individuals in a
population with an HIV prevalence of 1/1000.

HIV� HIVþ

Test � 97 902 5 97 907
Test þ 1998 95 2 093

99 900 100 100 000

We can also do these calculations using Bayes theorem. Let H0 be the
hypothesis that the individual is truly HIV positive, and y be the observation
that they test positive. The disease prevalence is the prior probability
(p(H0) ¼ 0:001), and we are interested in the chance that someone who
tests positive is truly HIV positive, i.e. the posterior probability p(H0jy).

Let H1 be the hypothesis that they are truly HIV negative; ‘95% sensitivity’
means that p(yjH0) ¼ 0:95, and ‘98% specificity’ means that
p(yjH1) ¼ 0:02. To use (3.2), we require two inputs: the prior odds
p(H0)=p(H1) which are 1/999, and the likelihood ratio p(yjH0)=p(yjH1)
which is 0:95=0:02 ¼ 95=2. Then from (3.2) the posterior odds are
(95=2)� 1=999 ¼ 95=1998. These odds correspond to a posterior prob-
ability p(H0jy) ¼ 95=(95þ 1998) ¼ 0:045, as found directly from the table.

Alternatively, we can use the form of Bayes theorem given by (3.1).
Now p(y) ¼ p(yjH0)p(H0)þ p(yjH1)p(H1) ¼ 0:95� 0:001þ 0:02� 0:999 ¼
0:020 93. Thus (3.1) says that p(H0jy) ¼ 0:95� 0:001=0:020 93 ¼ 0:045.

The crucial finding is that over 95% of those testing positive will, in fact,
not have HIV.

Figure 3.1 shows Bayes theorem for two hypotheses in either odds or prob-

ability form, for a range of likelihood ratios. The likelihood ratio from a positive

result in Example 3.1 is 0:95=0:02 ¼ 47:5. From a rough inspection of Figure

3.1 we can see that such a likelihood ratio is sufficient to turn a moderately low

prior probability, such as 0.2, into a reasonably high posterior probability of

around 0.9; however, if the prior probability is as low as it is in Example 3.1 (i.e.

0.001), then the posterior probability is still somewhat small.
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Figure 3.1 Bayes theorem for two hypotheses H0 and H1 ¼ ‘not H0’ in (a) probability
p(H0) and (b) odds p(H0)=p(H1) form. By specifying the prior probability or odds, and the
likelihood ratio p(yjH0)=p(yjH1), the posterior probability or odds can be read off the
graph. Note that (b) uses a logarithmic scaling, under which Bayes theorem gives a
linear relationship.

3.3 COMPARING SIMPLE HYPOTHESES: LIKELIHOOD

RATIOS AND BAYES FACTORS

In Section 3.2 we showed how data y influence the relative probabilities of two

hypotheses H0 and H1 through the likelihood ratio p(yjH0)=p(yjH1), and hence

the likelihoods contain all the relevant evidence that can be extracted from the

data: this is the likelihood principle, discussed in more detail in Section 4.3. This
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measure of the relative likelihood of two hypotheses is also known as the ‘Bayes

factor’ (BF), although Cornfield (1976) also termed this the ‘relative betting

odds’ between two hypotheses: see, for example, Goodman (1999b) for a

detailed exposition. The Bayes factor can vary between 0 and 1, with small

values being considered as both evidence against H0 and evidence for H1. The

scale in Table 3.2 was provided by the Bayesian physicist, Harold Jeffreys, and

dates from 1939 (Jeffreys, 1961, p. 432).

The crucial idea is that the Bayes factor transforms prior to posterior odds:

this uses expression (3.2), and the results can be read off Figure 3.1. In Example

3.1 we observed a Bayes factor (likelihood ratio) after a positive HIV test of

BF ¼ 47:5 in favour of being HIV positive (H0). Table 3.2 labels this as ‘very

strong’ evidence in itself in favour of H0, but when combined with strong prior

opinion against H0 (prior odds of 1/999) does not lead to a very convincing

result (posterior odds � 1/21).

Bayes factors can also be obtained for composite hypotheses that include

unknown parameters: this is discussed in Section 4.4 and is a feature when

using a prior distribution that puts a ‘lump’ of probability on a (null) hypothesis

(Section 5.5.4). The relationship between Bayes factors and traditional ways of

hypothesis testing has been the subject of considerable research and controversy,

and is discussed further in Section 4.4.

The use of Bayes theorem in diagnostic testing is an established part of formal

clinical reasoning. More controversial is the use of Bayes theorem in general

statistical analyses, where a parameter � is an unknown quantity such as the

mean benefit of a treatment on a specified patient population, and its prior

distribution p(�) needs to be specified. This major step might be considered as a

natural extension of the subjective interpretation of probability, but the

following (starred) section provides a further argument for why a prior distribu-

tion on a parameter may be a reasonable assumption.

Table 3.2 Calibration of Bayes factor (likelihood ratio) provided by Jeffreys.

Bayes factor range Strength of evidence in favour of H0 and against H1

> 100 Decisive
32 to 100 Very strong
10 to 32 Strong
3.2 to 10 Substantial
1 to 3.2 ‘Not worth more than a bare mention’

Strength of evidence against H0 and in favour of H1

1 to 1/3.2 ‘Not worth more than a bare mention’
1/3.2 to 1/10 Substantial
1/10 to 1/32 Strong
1/32 to 1/100 Very strong

< 1/100 Decisive
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3.4 EXCHANGEABILITY AND PARAMETRIC MODELLING*

In Section 2.2.3 we introduced the concept of independent and identically

distributed (i.i.d.) variables Y1, . . . , Yn as a fundamental component of standard

statistical modelling. However, just as we found in Section 3.1 that the rules of

probability could themselves be derived from more basic ideas of rational behav-

iour, so we can derive the idea of i.i.d. variables and prior distributions of

parameters from the more basic subjective judgement known as ‘exchangeabil-

ity’. Exchangeability is a formal expression of the idea that we find no systematic

reason to distinguish the individual variables Y1, . . . ,Yn – they are similar but not

identical. Technically, we judge that Y1, . . . ,Yn are exchangeable if the probabil-

ity that we assign to any set of potential outcomes, p(y1, . . . , yn), is unaffected by

permutations of the labels attached to the variables. For example, suppose

Y1, Y2, Y3 are the first three tosses of a (possibly biased) coin, where Y1 ¼ 1

indicates a head, and Y1 ¼ 0 indicates a tail. Then we would judge

p(Y1 ¼ 1, Y2 ¼ 0, Y3 ¼ 1) ¼ p(Y2 ¼ 1, Y1 ¼ 0, Y3 ¼ 1) ¼ p(Y1 ¼ 1,Y3 ¼ 0,

Y2 ¼ 1), i.e. the probability of getting two heads and a tail is unaffected by the

particular toss on which the tail comes. This is a natural judgement to make if we

have no reason to think that one toss is systematically any different from another.

Note that it does notmeanwe believe that Y1, . . . ,Yn are independent: independ-

ence would imply p(y1, . . . , yn) ¼ p(y1)� . . .� p(yn) and hence the result of a

series of tosses does not help us predict the next, whereas a long series of heads

would tend tomake us believe the coinwas seriously biased and hencewould lead

us to predict a head as more likely.

An Italian actuary, Bruno de Finetti, published in 1930 a most extraordinary

result (de Finetti, 1930). He showed that if a set of binary variables Y1, . . . ,Yn

were judged exchangeable, then it implied that

p(y1, . . . , yn) ¼
Z Yn

i¼1

p(yij�)p(�)d�: (3:3)

Now (3.3) is unremarkable if we argue from right to left: if Y1, . . . , Yn are

i.i.d., each with distribution p(yij�), their joint distribution (conditional on �)
is p(y1, . . . , ynj�) ¼

Qn
i¼1 p(yij�) (2.16). Hence, their marginal distribution

p(y1, . . . , yn) (2.7), given a distribution p(�), is given by (3.3). However, de Finetti’s

remarkable achievement was to argue from left to right: exchangeable random

quantities can be thought of as being i.i.d. variables drawn from some common

distribution depending on an unknown parameter �, which itself has a prior dis-

tribution p(�). Thus, froma subjective judgement about observable quantities, one

derives the whole apparatus of i.i.d. variables, conditional independence, param-

eters and prior distributions. This was an amazing achievement.

De Finetti’s results have been extended to much more general situations

(Bernardo and Smith, 1994), and the concept of exchangeability will continu-

ally recur throughout this book.
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3.5 BAYES THEOREM FOR GENERAL QUANTITIES

This small section is the most important in this book.

Suppose � is some quantity that is currently unknown, for example the true

success rate of a new therapy, and let p(�) denote the prior distribution of �. As
discussed in Section 3.1, this prior distribution should, strictly speaking, be

denoted p(�jH) to remind us that it represents Your judgement about � condi-

tional on a context H, where You are the person for whom the analysis is being

performed (the client), and not the statistician who may be actually carrying

out the analysis. The interpretation and source of such distributions are dis-

cussed in Section 3.9 and Chapter 5.

Suppose we have some observed evidence y, for example the results of a

clinical trial, whose probability of occurrence is assumed to depend on �. As
we have seen, this dependence is formalised by p(yj�), the (conditional) prob-

ability of y for each possible value of �, and when considered as a function of � is
known as the likelihood. We would like to obtain the new, posterior, probability

for different values of �, taking account of the evidence y; this probability has the
conditioning reversed and is denoted p(�jy).

Bayes theorem applied to a general quantity �was given in (2.6) and says that

p(�jy) ¼ p(yj�)
p(y)

� p(�): (3:4)

Now p(y) is just a normalising factor to ensure that
R
p(�jy) d� ¼ 1, and its value

is not of interest (unless we are comparing alternative models). The essence of

Bayes theorem only concerns the terms involving �, and hence it is often written

p(�jy) / p(yj�)� p(�), (3:5)

which says that the posterior distribution is proportional to (i.e. has the same

shape as) the product of the likelihood and the prior. The deceptively simple

expression (3.5) is the basis for the whole of the rest of this book, since it shows

how to make inferences from a Bayesian perspective, both in terms of estimation

and obtaining credible intervals and also making direct probability statements

about the quantities in which we are interested.

3.6 BAYESIAN ANALYSIS WITH BINARY DATA

In Section 2.2.4 we considered a probability � of an event occurring, and

derived the form of the likelihood for � having observed n cases in which r

events occurred. Adopting a Bayesian approach to making inferences, we wish

to combine this likelihood with initial evidence or opinion regarding �, as

expressed in a prior distribution p(�).
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3.6.1 Binary data with a discrete prior distribution

First, suppose only a limited set of hypotheses concerning the true proportion �
are being entertained, corresponding to a finite list denoted �1, . . . , �J . Suppose
in addition a prior probability p(�j) of each has been assessed, where�jp(�j) ¼ 1.

For a single Bernoulli trial with outcome 0 or 1, the likelihood for each possible

value for � is given by (2.15),

p(yj�j) ¼ �yj (1� �j)
1�y

, (3:6)

i.e. p(yj�j) ¼ �j if y ¼ 1, and p(yj�j) ¼ 1� �j if y ¼ 0.

Having observed an outcome y, Bayes theorem (3.5) states that the posterior

probabilities for the �j obey

p(�jjy) / �yj (1� �j)
1�y � p(�j), (3:7)

where the normalising factor that ensures that the posterior probabilities add to

1 is

p(y) ¼�j�
y
j (1� �j)

1�y � p(�j):

After further observations have been made, say with the result that there have

been r ‘successes’ out of n trials, the relevant posterior will obey

p(�jjr) / �rj (1� �j)
n�r � p(�j): (3:8)

A basic example of these calculations is given in Example 3.2.

Example 3.2 Drug: Binarydataandadiscrete prior

Suppose a drug has an unknown true response rate y, and for simplicity we
assume that y can only take one of the values y1 ¼ 0:2, y2 ¼ 0:4, y3 ¼ 0:6
or y4 ¼ 0:8. Before experimentation we adopt the ‘neutral’ position of
assuming each value yj is equally likely, so that p(yj) ¼ 0:25 for each
j ¼ 1, 2, 3, 4.

Suppose we test the drug on a single subject and we observed a positive
response (y ¼ 1). How should our belief in the possible values of y be
revised?

First, we note that the likelihood is simply p(yjyj) ¼ yyj (1� y)(1�y) ¼ yj. Table
3.3 displays the components of Bayes theorem (3.7): the ‘Likelihood �
prior’ column, normalised by its sum p(y), gives the posterior probabilities.
It is perhaps initially surprising that a single positive response makes it four
times as likely that the true response rate is 80% rather than 20%.
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Table 3.3 Results after observing a single positive response, y ¼ 1, for a drug
given an initial uniform distribution over four possible response rates yj.

j yj Prior
p(yj)

Likelihood
p(yjyj)

Likelihood � prior
p(yjyj)p(yj)

Posterior
p(yjjy)

1 0.2 0.25 0.2 0.05 0.10
2 0.4 0.25 0.4 0.10 0.20
3 0.6 0.25 0.6 0.15 0.30
4 0.8 0.25 0.8 0.20 0.40P

j 1.0 0.50 1.0

Suppose we now observe 15 positive responses out of 20 patients, how is
our belief revised? Table 3.4 shows that any initial belief in y1 ¼ 0:2 is now
completely overwhelmed by the data, and that the only remaining contend-
ers are y3 ¼ 0:6 with about 30% of the posterior probability, and y4 ¼ 0:8
with about 70%.

We note that, had we given any non-zero probability to the extreme values
of y ¼ 0, 1, i.e. the drug either never or always worked, these would give a
zero likelihood and hence zero posterior probability.

Table 3.4 Results after observing 15 positive responses, y ¼ 15, for a drug
out of 20 cases, given an initial uniform distribution over four possible response
rates yj.

j yj Prior
p(yj)

Likelihood
y15j (1� yj)

5

(� 10�7)

Likelihood � prior

y15j (1� yj)
5 p(yj)

(� 10�7)

Posterior
p(yjjX ¼ 1)

1 0.2 0.25 0.0 0.0 0.000
2 0.4 0.25 0.8 0.2 0.005
3 0.6 0.25 48.1 12.0 0.298
4 0.8 0.25 112.6 28.1 0.697P

j 1.0 40.3 1.0

3.6.2 Conjugate analysis for binary data

It is generally more realistic to consider � a continuous parameter, and hence it

needs to be given a continuous prior distribution. One possibility is that we

think all possible values of � are equally likely, in which case we could summar-

ise this by a uniform distribution (Section 2.6.4) so that p(�) ¼ 1 for 04�41.

Applying Bayes theorem (3.5) yields
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p(�jy) / �r(1� �)n�r � 1, (3:9)

where r is the number of events observed and n is the total number of individ-

uals.

We may recognise that the functional form of the posterior distribution in

(3.9) is proportional to that of a beta distribution (Section 2.6.3). Rewriting the

posterior distribution (3.9) as �(rþ1)�1(1� �)(n�rþ1)�1
, we can see that the pos-

terior distribution is in fact Beta [rþ 1, n� rþ 1]. This immediately means that

we can now summarise the posterior distribution in terms of its mean and

variance, and make probability statements based on what we know about the

beta distribution (for example, many common statistical packages will calculate

tail area probabilities for the beta distribution).

Instead of a uniform prior distribution for � we could take a Beta [a, b] prior
distribution and obtain the following analysis:

Prior / �a�1(1� �)b�1

Likelihood / �r(1� �)n�r

Posterior / �a�1(1� �)b�1�r(1� �)n�r

/ �aþr�1(1� �)bþn�r�1

¼ Beta[aþ r, bþ n� r]:

(3:10)

Thus we have specified a beta prior distribution for a parameter, observed data

from a Bernoulli or binomial sampling distribution, worked through Bayes

theorem, and ended up with a beta posterior distribution. This is a case of

conjugate analysis. Conjugate models occur when the posterior distribution is

of the same family as the prior distribution: other examples include the gamma

distribution being conjugate with a Poisson likelihood, normal priors being

conjugate with normal likelihoods (Section 3.7), and gamma priors for un-

known precisions of normal likelihoods (Section 2.6.5).

Example 3.3 Drug (continued): Binarydataanda continuousprior

Suppose that previous experience with similar compounds has suggested
that response rates between 0.2 and 0.6 could be feasible, with an expect-
ation around 0.4. We can translate this into a prior Beta[a, b] distribution as
follows.

We first want to estimate the mean m and standard deviation s of the prior
distribution. For normal distributions we know that m� 2s includes just
over 95% of the probability, so if we were assuming a normal prior we
might estimate m ¼ 0:4, s ¼ 0:1. However, we know from Section 2.6.3
that beta distributions with reasonably high a and b have an approximately
normal shape, so these estimates might also be used for a beta prior.
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Next, from Section 2.6.3, we know that for a beta distribution

m ¼ a=(aþ b), (3:11)

s2 ¼ m(1�m)=(aþ bþ 1): (3:12)

Expression (3.12) canbe rearranged togiveaþ b ¼ m(1�m)=s2 � 1.Using
the estimatesm ¼ 0:4, s ¼ 0:1,we obtain aþ b ¼ 23. Then, from (3.11), we
see that a ¼ m(aþ b), and hence we finally obtain a ¼ 9:2, b ¼ 13:8: this
can be considered a ‘method of moments’. A Beta[9.2,13.8] distribution is
shown inFigure 3.2(a), showing that it well represents the prior assumptions.
It is convenient to think of this prior distribution as that which would have
arisen had we started with a ‘non-informative’ prior Beta[0,0] and then ob-
served a ¼ 9:2 successes in aþ b ¼ 23 patients (however, this is only a
heuristic argument as there is no agreed ‘non-informative’ beta prior, with
Beta[0,0], Beta[ 12 ,

1
2 ], Beta[1,1] all having been suggested (Section 5.5.1)).

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

(a) Prior

(b) Likelihood

(c) Posterior

Probability of response

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2 (a) is a Beta[9.2,13.8] prior distribution supporting response rates
between 0.2 and 0.6, (b) is a likelihood arising from a binomial observation of 15
successes out of 20 cases, and (c) is the resulting Beta[24.2, 18.8] posterior from a
conjugate beta-binomial analysis.
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If we now observed r ¼ 15 successes out of 20 trials, we know from (3.10)
that the parameters of the beta distribution are updated to
[aþ 15, bþ 20� 5] ¼ [24:2, 18:8]. The likelihood and posterior are
shown in Figures 3.2(b) and 3.2(c): the posterior will have mean
24:2=(24:2þ 18:8) ¼ 0:56.

3.7 BAYESIAN ANALYSIS WITH NORMAL

DISTRIBUTIONS

In Section 2.4 we saw that in many circumstances it is appropriate to consider a

likelihood as having a normal shape, although this may involve working

on somewhat uninituitive scales such as the logarithm of the hazard ratio.

With a normal likelihood it is mathematically convenient, and often reasonably

realistic, to make the assumption that the prior distribution p(�) has the form

p(�) ¼ N � �,
�2

n0

����
�
,

�
(3:13)

where � is the prior mean. We note that the same standard deviation � is used

in the likelihood and the prior, but the prior is based on an ‘implicit’ sample size

n0. The advantage of this formulation becomes apparent when we carry out

prior-to-posterior analysis. We note in passing that as n0 tends to 0, the

variance becomes larger and the distribution becomes ‘flatter’, and in the limit

the distribution becomes essentially uniform over (�1, 1). A normal prior

with a very large variance is sometimes used to represent a ‘non-informative’

distribution (Section 5.5.1).

Suppose we assume such a normal prior � � N[�, �2=n0] and likelihood

ym � N[�, �2=m]. Then the posterior distribution obeys

p(�jym) / p(ymj�)p(�)

/ exp � (ym � �)2m

2�2

" #
� exp � (�� �)2n0

2�2

" #
,

ignoring irrelevant terms that do not include �. By matching terms in � it can be

shown that

(ym � �)2mþ (�� �0)
2
n0 ¼ �� n0�0 þmym

n0 þm

� �2

(n0 þm)þ (ym � �)2
1

m
þ 1

n0

� �
,

and we can recognise that the term involving � is exactly that arising from a

posterior distribution
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p(�jym) ¼ N �
n0�þmym

n0 þm
,

�2

n0 þm

����
�
:

�
(3:14)

Equation (3.14) is very important. It says that our posterior mean

(n0�þmym)=(n0 þm) is a weighted average of the prior mean � and parameter

estimate ym, weighted by their precisions, and therefore is always a compromise

between the two. Our posterior variance (1/precision) is based on an implicit

sample size equivalent to the sum of the prior ‘sample size’ n0 and the sample

size of the data m: thus, when combining sources of evidence from the prior and

the likelihood, we add precisions and hence always decrease our uncertainty. As

Senn (1997a, p. 46) claims, ‘A Bayesian is one who, vaguely expecting a horse

and catching a glimpse of a donkey, strongly concludes he has seen a mule’.

Note that as n0 ! 0, the prior tends towards a uniform distribution and the

posterior tends to the same shape as the likelihood.

Suppose we do not adopt the convention for expressing prior and sampling

variances as �2=n0 and �2=m, and instead use the general notation

� � N[�, t2] and likelihood ym � N[�, �2
m]. Then it is straightforward to

show that the posterior distribution (3.14) can be expressed as

p(�jym) ¼ N �

�
t2 þ

ym
�2m

1
t2 þ 1

�2m

,
1

1
t2 þ 1

�2m

�����
#
:

"
(3:15)

We will sometimes find this general form useful, but will generally find (3.14)

more intuitive.

Example 3.4 provides a simple example of Bayesian reasoning using normal

distributions.

Example 3.4 SBP: Bayesiananalysis fornormaldata

Suppose we are interested in the long-term systolic blood pressure (SBP)
in mmHg of a particular 60-year-old female. We take two independent
readings 6 weeks apart, and their mean is 130. We know that SBP is
measured with a standard deviation s ¼ 5. What should we estimate her
SBP to be?

Let her long-term SBP be denoted y. A standard analysis would use the
sample mean ym ¼ 130 as an estimate, with standard error
s=

ffiffiffiffi
m

p
¼ 5=

ffiffiffi
2

p
¼ 3:5: a 95% confidence interval is ym � 1:96� s=

ffiffiffiffi
m

p
,

i.e. 123.1 to 136.9.

However, we may have considerable additional information about SBPs
which we can express as a prior distribution. Suppose that a survey in the
same population revealed that females aged 60 had a mean long-term
SBP of 120 with standard deviation 10. This population distribution can be
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considered as a prior distribution for the specific individual, and is shown in
Figure 3.3(a): if we express the prior standard deviation as s=

ffiffiffiffiffi
n0

p
(i.e.

variance s2=n0), we can solve to find n0 ¼ (s=10)2 ¼ 0:25.

Figure 3.3(b) shows the likelihood arising from the two observations on the
woman. From (3.14) the posterior distribution of y is normal with mean
(0:25� 120þ 2� 130)=(0:25þ 2) ¼ 128:9 and standard deviation
s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p ¼ 5=
ffiffiffiffiffiffiffiffiffiffi
2:25

p
¼ 3:3, giving a 95% interval of 128:9� 1:96� 3:3

¼ (122:4, 135:4). Figure 3.3(c) displays this posterior distribution,
revealing some ‘shrinkage’ towards the population mean, and a small
increase in precision from not using the data alone.

Intuitively, we can say that the woman has somewhat higher measure-
ments than we would expect for someone her age, and hence we slightly
adjust our estimate to allow for the possibility that her two measures
happened by chance to be on the high side. As additional measures are
made, this possibility becomes less plausible and the prior knowledge will
be systematically downgraded.

3.8 POINT ESTIMATION, INTERVAL ESTIMATION AND

INTERVAL HYPOTHESES

Although it is most informative to plot an entire posterior distribution, there will

generally be a need to produce summary statistics: we shall consider point

estimates, intervals, and the probabilities of specified hypotheses.

Point estimates. Traditional measures of location of distributions include the

mean, median and mode, and – by imposing a particular penalty on error in

estimation (Berger, 1985) – each can be given a theoretical justification as a

point estimate derived from a posterior distribution. If the posterior distribution

is symmetric and unimodal, as in Figure 3.3, then the mean, median and mode

all coincide in a single value and there is no difficulty in making a choice. We

shall find, however, that in some circumstances posterior distributions are

considerably skewed and there are marked differences between, say, mean

and median. We shall prefer to quote the median in such contexts as it is less

sensitive to the tails of the distribution, although it is perhaps preferable to

report all three summary measures when they show wide disparity.

Interval estimates. Any interval containing, say, 95% probability may be termed

a ‘credible’ interval to distinguish it from a Neyman–Pearson ‘confidence inter-

val’, although we shall generally refer to them simply as posterior intervals.

Three types of intervals can be distinguished – we assume a continuous param-

eter � with range on (�1, 1) and a posterior conditional on generic data y:
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(a) Prior distribution

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(b) Likelihood

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(c) Posterior distribution

Long-term systolic blood pressure of 60-year old woman

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

Figure 3.3 Estimating the true long-term underlying systolic blood pressure of a
60-year-old woman: (a) the prior distribution is N[120, 102] and expresses the distribu-
tion of true SBPs in the population; (b) the likelihood is proportional to N[130, 3:52] and
expresses the support for different values arising from the two measurements made on
the woman; (c) the posterior distribution is N[128:9, 3:32] and is proportional to the
likelihood multiplied by the prior.

One-sided intervals. For example, a one-sided upper 95% interval would be

(�L,1), where p(� < �Ljy) ¼ 0:05.
Two-sided ‘equi-tail-area’ intervals. A two-sided 95% interval with equal prob-

ability in each tail area would comprise (�L, �U ), where p(� < �Ljy) ¼ 0:025,
and p(� > �U jy) ¼ 0:975.

Highest posterior density (HPD) intervals. If the posterior distribution is skewed,

then a two-sided interval with equal tail areas will generally contain some

parameter values that have lower posterior probability than values outside

the interval. An HPD interval does not have this property – it is adjusted so

that the probability ordinates at each end of the interval are identical, and

hence it is also the narrowest possible interval containing the required

probability. Of course if the posterior distribution has more than one mode,

then the HPD may be made up of a set of disjoint intervals.

These alternatives are illustrated in Figure 3.4, suggesting that HPD intervals

would be preferable – unfortunately they are generally difficult to compute. For

normal posterior distributions these intervals require only the use of tables or
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(a) Symmetric unimodal distribution

−1.64 1.64

(b) Skewed unimodal distribution

0.4 5.5 6.3

(c) Bimodal distribution

Parameter of interest

−4.5 0.5 2.9 8.6

Figure 3.4 (a) shows a symmetric unimodal distribution in which equi-tail-area and
HPD intervals coincide at �1:64 to 1.64. (b) is a skewed unimodal distribution in which
the equi-tail-area interval is 0.8 to 6.3, whereas the HPD of 0.4 to 5.5 is considerably
shorter. (c) shows a bimodal distribution in which the equi-tail-area interval is �3:9 to
8.6, whereas the HPD appropriately consists of two segments.

programs giving tail areas of normal distributions (Sections 2.3 and 3.7). In

more complex situation we shall generally be simulating values of � and one-

and two-sided intervals are constructed using the empirical distribution of

simulated values (Section 3.19.3). It will not usually be possible to find HPD

intervals when using simulation methods.

Traditional confidence intervals and Bayesian credible intervals differ in a

number of ways.

1. Most important is their interpretation: we say there is a 95% probability that

the true � lies in a 95% credible interval, whereas this is certainly not the
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interpretation of a 95% confidence interval. In a long series of 95% confi-

dence intervals, 95% of them should contain the true parameter value –

unlike the Bayesian interpretation, we cannot give a probability for whether

a particular confidence interval contains the true value, it either does or does

not and all we have to fall back on is the long-run properties of the proced-

ure. Of course, the direct Bayesian interpretation is often wrongly ascribed to

confidence intervals.

2. Credible intervals will generally be narrower due to the additional infor-

mation provided by the prior: for an analysis assuming the normal distribu-

tion they will have width 2� 1:96� �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p
, compared to

2� 1:96� �=
ffiffiffiffi
m

p
for the confidence interval.

3. Some care is required in terminology: while the width of classical confidence

intervals is governed by the standard error of the estimator, the width of

Bayesian credible intervals is dictated by the posterior standard deviation.

Interval hypotheses. Suppose a hypothesis of interest comprises an interval

H0 : �L < � < �U , for some prespecified �L, �U indicating, for example, a

range of clinical equivalence. Then it is straightforward to report the posterior

probability p(H0jy) ¼ p(�L < � < �U jy), which may again be obtained using

standard formulae or simulation methods.

Example 3.5 SBP (continued): Intervalestimation

We extend Example 3.4 to encompass testing the hypothesis that the
woman has a long-term SBP greater than 135, and the provision of 95%
intervals.

The probability of the hypothesis H0: yL < y < 1, yL ¼ 135, is

p(H0jy) ¼ p(y > yLjy) ¼ 1�F

yl �
n0mþmym
n0 þm

s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p

0
B@

1
CA

and is shaded in Figure 3.5(a). Figure 3.5(b) displays a 95% posterior
interval comprising the posterior mean �1:96� s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p
. Table 3.5

provides the results for both prior and posterior.

We can contrast the Bayesian analysis with the classical conclusions
drawn from the likelihood alone. This would comprise a 95% confidence
interval ym � 1:96� s=

ffiffiffiffi
m

p
, and a one-sided P-value

p(Y < ymjH0) ¼ F
ym � yL
s=

ffiffiffiffi
m

p
� �

;
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(a)

Systolic blood pressure of a 60-year-old woman

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140

(b) 

Systolic blood pressure of a 60-year-old woman

Figure 3.5 Inference from the posterior distribution of the true underlying systolic
blood pressure of a 60-year-old woman: (a) shaded area is the probability 0.033
that y > 135; (b) a two-sided 95% interval (both equi-probability and HPD).

this is numerically identical to the tail area of the posterior with a uniform
prior obtained by setting n0 ¼ 0.

We note from Table 3.5 that a traditional one-sided p-value for the
hypothesis H0: y > 135 is 0.08, while the Bayesian analysis has used the
prior opinion to reduce this to 0.03.

Table 3.5 Bayesian and traditional intervals and tests of hypothesis H0: y > 135.

Mean SD 95% credible interval p(H0jym)
Prior 120.0 10.0 100.4 to 139.6 0.067
Posterior 128.9 3.3 122.4 to 135.4 0.033

Estimate SE 95% CI p(Y < ymjH0)
Classical 130.0 3.5 123.1 to 136.9 0.078

If we were to express the (rather odd) prior belief that all values of � were

equally likely, then p(�) would be constant and (3.5) shows that the resulting

posterior distribution is simply proportional to the likelihood: (3.14) shows this

is equivalent to assuming n0 ¼ 0 in an analysis assuming a normal distribution.

In many standard situations a traditional confidence interval is essentially

equivalent to a credible interval based on the likelihood alone, and Bayesian

and classical results may therefore be equivalent when using a uniform or ‘flat’
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prior. Burton (1994) claims that ‘it is already common practice in medical

statistics to interpret a frequentist confidence interval as if it did represent a

Bayesian posterior probability arising from a calculation invoking a prior dens-

ity that is uniform on the fundamental scale of analysis’. In our examples we

shall present the likelihood and often interpret it as a posterior distribution after

having assumed a ‘flat’ prior: this can be termed a ‘standardised likelihood’, and

some possible problems with this are discussed in Section 5.5.1.

Example 3.6 presents a Bayesian analysis of a published trial: it uses a highly

structured format which will be discussed further in Section 3.21. We are aware

of the potentially confusing discussion in terms of mortality rates, odds ratios,

log(odds ratios) and risk reduction – this multiple terminology is unfortunately

inevitable and it is best to confront it early on.

Example 3.6 GREAT (continued): Bayesian analysis of a trial of early
thrombolytic therapy

Reference: Pocock and Spiegelhalter (1992).

Intervention: Thrombolytic therapy after myocardial infarction, given at
home by general practitioners.

Aimofstudy: To compare anistreplase (a new drug treatment to be given at
home as soon as possible after a myocardial infarction) and placebo
(conventional treatment).

Studydesign: Randomised controlled trial.

Outcomemeasure: Thirty-day mortality rate under each treatment, with the
benefit of the new treatment measured by the odds ratio, OR, i.e. the
ratio of the odds of death following the new treatment to the odds
of death on the conventional: OR < 1 therefore favours the new
treatment.

Statistical model: Approximate normal likelihood for the logarithm of the
odds ratio (Section 2.4).

Prospective Bayesian analysis?: No, it was carried out after the trial
reported its results.

Priordistribution: The prior distribution was based on the subjective judge-
ment of a senior cardiologist, informed by empirical evidence derived
from one unpublished and two published trials, who expressed belief that
‘an expectation of 15–20% reduction in mortality is highly plausible, while
the extremes of no benefit and a 40% relative reduction are both un-
likely’. This has been translated to a normal distribution on the log(OR)
scale, with a prior mean of m0 ¼ �0:26 (OR ¼ 0:78) and symmetric 95%
interval of �0:51 to 0.00 (OR 0.60 to 1.00), giving a standard deviation of
0.13. This prior is shown in Figure 3.6(a).
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Loss functionordemands: None specified.

Computation/software: Conjugate normal analysis (3.14).

Evidence from study: The 30-day mortality was 23/148 on control and
13/163 on new treatment.

We have already seen in Example 2.5 that the estimated log(OR) is
ym ¼ �0:74 (OR ¼ 0:48), with estimated standard error 0.36, giving a
95% classical confidence interval for log(OR) from �1:45 to � 0:03
(OR from 0.24 to 0.97). The traditional standardised test statistic is
therefore �0:74=0:36 ¼ 2:03, and the null hypothesis of no effect is
therefore rejected with a two-sided P-value of 2F(�2:03) ¼ 0:04
(GREAT Group, 1992). Figure 3.6(b) shows the likelihood expressing
reasonable support for values of y representing a 40–60% reduction in
odds of death. As explained in Example 2.5, it is convenient to express
the variance of ym as s2=m, and take s ¼ 2 and m ¼ 30:5.

Bayesian interpretation: Figure 3.6(c) shows the posterior distribution,
obtained by multiplying the prior and likelihood together and then making
the total area under the curve equal to one (i.e. ‘certainty’). The prior
distribution has a standard deviation of 0.13, and expressing this
as s=

ffiffiffiffiffi
n0

p
leads to an equivalent number of observations

n0 ¼ s2=0:132 ¼ 236:7. Thus the prior can be thought to have around
236.7/30.5 � 8 times as much information as the likelihood, showing the
strength of the subjective judgement in this example.

The equivalent number of observations in the posterior is then
n0 þm ¼ 236:7þ 30:5 ¼ 267:2, with a posterior mean equal to the
weighted average (n0mþmym)=(n0 þm) ¼ �0:31 with standard devi-
ation s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffi
267:2

p
¼ 0:12. Thus, the estimated odds ratio is

around e�0:31 ¼ 0:73, or 27% risk reduction (half that observed in the
trial). A 95% credible interval can be calculated on the log(OR) scale to
be from�0:55 to�0:07, which corresponds to odds ratios from 0.58 to
0.93, or a 95% probability that the true risk reduction lies between 7%
and 42%. The posterior probability that the reduction is at least 50% can
be calculated by noting this is equivalent to a log(OR) of �0:69, which
gives a probability of F( (�0:69þ 0:31)=0:12) ¼ F(�3:11) ¼ 0:001. We
can also calculate the posterior probability that there is any treatment
effect as p(y < 0jym) ¼ F( (0þ 0:31)=0:12) ¼ F(2:54) ¼ 0:995 and so,
adopting the prior provided by the ‘expert’, we can be 99.5% certain the
new treatment is of benefit. Nevertheless, the evidence in the likelihood
has been pulled back towards the prior distribution – a formal represen-
tation of the belief that the results were ‘too good to be true’.

Sensitivity analysis: As an alternative prior formulation, we consider an
observer who has no prior bias one way or another, but is more scep-
tical about large treatment effects than the current expert: this can be
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favours home therapy  <-                     Mortality odds ratio                       ->  favours control

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

favours home therapy  <-                     Mortality odds ratio                       ->  favours control

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

(a) Prior distribution

(b) Likelihood

(c) Posterior distribution

favours home therapy  <-                     Mortality odds ratio                       ->  favours control

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Figure 3.6 Prior, likelihood and posterior distributions arising from GREAT trial of
home thrombolysis. These are all normal on the y ¼ log (OR) scale.

represented by a normal prior centred on log(OR) ¼ 0 (OR ¼ 1) and with
a 95% interval that runs from a 50% reduction in odds of death (OR ¼
0.5, log(OR) ¼ �0:69), to a 100% increase (OR ¼ 2.0, log(OR) ¼ 0.69).
On a log(OR) scale, this prior has a 95% interval from�0:69 to 0.69, and
so has a standard deviation 0.69/1.96 ¼ 0.35 and hence m ¼ 4=0:352 ¼
32:3, approximately the same weight of evidence as the likelihood. The
prior can therefore be thought of as providing equivalent evidence to that
arising from an imaginary balanced trial, in which around 16 deaths were
observed on each arm. This prior is shown in Figure 3.7, together with the
likelihod and posterior distribution, which has mean �0:36 (OR ¼ 0.70)
and equivalent size n0 þm ¼ 62:8, leading to a standard deviation of
0.25. The probability that there is no benefit from the new treatment is
now only F(�0:36=0:25) ¼ F(�1:42) ¼ 0:08, shown as the shaded area
in Figure 3.7. This analysis suggests that a reasonably sceptical person
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may therefore not find the GREAT results convincing that there is a
benefit: these ideas are formally explored in Section 3.11.

Comments: It is interesting to note that Morrison etal. (2000) conducted a
meta-analysis of early thrombolytic therapy and estimated OR ¼ 0.83
(95% interval from 0.70 to 0.98), far less impressive than the GREAT
resultsand reasonably in linewith theposteriordistributionshown inFigure
3.6, which was calculated 8 years before publication of themeta-analysis.

However, this finding should not be over-interpreted and two points
should be kept in mind. First, Morrison et al. (2000) include some trials
that contributed to the prior used by the expert in the above example, and
so there is good reason why our posterior (which could be interpreted as
a type of subjective meta-analysis) and the formal meta-analysis should
correspond. Second, their primary outcome measure is in-hospital mor-
tality, for which GREAT showed a non-significant (but still substantial)
benefit of 11/163 vs. 17/148, with an estimated OR of 0.57.

favours home therapy  <-                 Mortality odds ratio                  ->  favours control

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.3 1.5

Likelihood
Prior
Posterior

Figure 3.7 A prior distribution that expresses scepticism about large treatment
effects would be centred on 0 and have, for example, a 95% interval for OR
between 0.5 and 2.0. This is equivalent to a previous study in which 32.3 events
occurred, divided equally between the two arms. Adopting this prior and updating it
with the GREAT data leads to a posterior distribution as shown, with the shaded
area representing a probability of 8% that the treatment is harmful.
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3.9 THE PRIOR DISTRIBUTION

Bayesian analysis is driven by the prior distribution, and its source and use

present many challenges. These will be covered in detail in Chapter 5, including

elicitation from experts, derivation from historical data, the use of ‘default’

priors to represent archetypal positions of ignorance, scepticism and enthusiasm

and, when multiple related studies are being simultaneously analysed, the

assumption of a common prior that may be ‘estimated’.

It is important to clarify a number of possible misconceptions that may arise.

In particular, a prior is:

Not necessarily specified beforehand. Despite the name ‘prior’ suggesting a temporal

relationship, it is quite feasible for a prior distribution to be decided after seeing the

results of a study, since it is simply intended to summarise reasonable uncertainty

given evidence external to the study in question. Cox (1999) states:

I was surprised to read that priors must be chosen before the data have been seen. Nothing

in the formalism demands this. Prior does not refer to time, but to a situation, hypothetical

whenwe have data, where we assess what our evidence would have been if we had had no

data. This assessment may rationally be affected by having seen the data, although there

are considerable dangers in this, rather similar to those in frequentist theory.

Naturally when making predictions or decisions one’s prior distribution needs

to be unambiguously specified, although even then it is reasonable to carry out

analysis of sensitivity to alternative choices.

Not necessarily unique. There is no such thing as the ‘correct’ prior. Instead,

researchers have suggested using a ‘community’ of prior distributions express-

ing a range of reasonable opinions. Thus a Bayesian analysis of evidence is best

seen as providing a mapping from specified prior beliefs to appropriate posterior

beliefs.

Not necessarily completely specified. When multiple related studies are being

simultaneously analysed, it may be possible to have unknown parameters in

the prior which are then ‘estimated’ – this is related to the use of hierarchical

models (Section 3.17).

Not necessarily important. As the amount of data increases, the prior will,

unless it is of a pathological nature, be overwhelmed by the likelihood and

will exert negligible influence on the conclusions.

Of course, conclusions strongly based on beliefs that cannot be supported by

concrete evidence are unlikely to be widely regarded as convincing, and so it is

important to attempt to find consensus on reasonable sources of external
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evidence. As a true exemplification of the idea that the prior distribution should

be under the control of the consumer of the evidence, Lehmann and Goodman

(2000) describe ambitious interactive software which allows users to try their

own prior distributions.

3.10 HOW TO USE BAYES THEOREM TO INTERPRET

TRIAL RESULTS

There have been many connections made between the use of Bayes theorem in

diagnostic testing (Example 3.1) and in general clinical research, pointing out

that just as the prevalence of the condition (the prior probability) is required for

the assessment of a diagnostic test, so the prior distribution on � should supple-

ment the usual information (P-values and confidence intervals) which summar-

ises the likelihood. We need only think of the huge number of clinical trials that

are carried out and the few clearly beneficial interventions found, to realise that

the ‘prevalence’ of truly effective treatments is low. We should thus be cautious

about accepting extreme results, such as observed in the GREAT trial, at face

value; indeed, it has been suggested that a Bayesian approach provides ‘a

yardstick against which a surprising finding may be measured’ (Grieve,

1994b). Example 3.7 illustrates this need for caution.

Example 3.7 Falsepositives:‘The epidemiologyof clinical trials’

Simon (1994b) considers the following (somewhat simplified) situation.
Suppose 200 trials are performed, but only 10% are of truly effective
treatments. Assume each trial is carried out with Type I error a of 5% (the
chance of claiming an ineffective treatment is effective) and Type II error b
of 20% (the chance of claiming an effective treatment is ineffective) – these
are typical values adopted in practice. Table 3.6 displays the expected
outcomes: of the 180 trials of truly ineffective treatments, 9 (5%) are
expected to give a ‘significant’ result; similarly, of 20 trials of effective
treatments, 4 (20%) are expected to be negative.

Table 3.6 shows that 9=25 ¼ 36% of trials with significant results are in fact
of totally ineffective treatments: in diagnostic testing terms, the ‘predictive

Table 3.6 The expected results when carrying out 200 clinical trials with
a ¼ 5%, b ¼ 20%, and of which only 10% of treatments are truly effective.

Treatment

Truly ineffective Truly effective

Trial conclusion Not significant 171 4 175
Significant 9 16 25

180 20 200
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value positive’ is only 64%. In terms of the odds formulation of Bayes
theorem (3.2), when a ‘significant result’ is observed,

p(H0j‘significant result’)
p(H1j‘significant result’)

¼ p(‘significant result’jH0)

p(‘significant result’jH1)
� p(H0)

p(H1)

¼ p( Type I error)

1� p( Type II error)
� p(H0)

p(H1)
:

Hence the prior odds 0.90/0.10 on the treatment being ineffective (H0) are
multiplied by the likelihood ratio a=(1� b) ¼ 0:05=0:80 ¼ 1=16 to give the
posterior odds 9/16, corresponding to a probability of 9/25.

Qualitatively, this says that if truly effective treatments are relatively rare,
then a ‘statistically significant’ result stands a good chance of being a false
positive.

The analysis in Example 3.7 simplistically divides trial results into ‘significant’

or ‘non-significant’, the Bayes factor (likelihood ratio) for the null hypothesis is

�=(1� �): this might typically be 0:05=0:80 ¼ 1=16, categorised as ‘strong’

evidence against H0 by Jeffreys (see Table 3.2). However, in Section 4.4.2 we

describe how the relationship between Bayes factors and traditional hypothesis

tests depends crucially on whether one knows the precise P-value or simply

whether a result is ‘significant’. We note that Lee and Zelen (2000) suggest

selecting � so that the posterior probability of an effective treatment, having

observed a significant result, is sufficiently high, say above 0.9. This is criticised

by Simon (2000) and Bryant and Day (2000) as being based solely on whether

the trial is ‘significant’ or not, rather than the actual observed data.

3.11 THE ‘CREDIBILITY’ OF SIGNIFICANT TRIAL

RESULTS*

Wehave already seen in Example 3.6 how a ‘sceptical’ prior can be centred on ‘no

treatment difference’ (� ¼ 0) to represent doubts about large treatment effects. It

is natural to extend this approach to ask how sceptical we would have to be not to

find an apparently positive treatment effect convincing (Matthews, 2001). Spe-

cifically, suppose we have observed data ywhich is apparently ‘significant’ in the

conventional sense, in that the classical 95% interval for � based on a normal

likelihood lies wholly above or below 0. In addition, suppose our prior mean is 0,

reflecting initial scepticism about treatment differences, with the variance of the

prior expressing the degree of scepticism with which we view extreme treatment

effects, either positive or negative. Matthews (2001) derives an expression for the

critical prior distribution which would just lead to the corresponding posterior

95% interval including 0.
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Suppose we observe ym < 0. For a normal likelihood and prior with mean 0,

(3.14) shows that

� � N
mym

n0 þm
,

�2

n0 þm

� �
,

which means that the upper point um of the 95% posterior interval is

um ¼ mym

n0 þm
þ 1:96

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0 þm

p :

The 95% interval will therefore overlap 0 if um > 0. Simple rearrangement

shows this will happen provided

n0 >
mym

1:96�

� �2
�m ¼ m2

1:962�2
y2m � 1:962�2

m

� �
, (3:16)

which provides a simple formula for determining the effective number of events in

the sceptical prior that would just lead to a 95% posterior interval including 0.

Matthews (2001) shows that we can work directly in terms of the lower

and upper points of a 95% interval based on the data alone, denoted lD and

uD. Thus lD, uD ¼ ym � 1:96�=
ffiffiffiffi
m

p
. It follows that (uD � lD)

2 ¼ 4� 1:962�2=m,

and uDlD ¼ y2m � 1:962�2=m. Then from (3.16) the critical value of n0
occurs when the lower point of the 95% prior interval, l0 ¼ �1:96�=

ffiffiffiffiffi
n0

p
,

obeys

l0 ¼ �1:96�ffiffiffiffiffi
n0

p ¼ � (uD � lD)
2

4
ffiffiffiffiffiffiffiffiffi
uDlD

p :

Often we will be working, say, on a log(odds ratio) scale: if we let

l0 ¼ log (L0), lD ¼ log (LD), uD ¼ log (UD) then the corresponding expression is

L0 ¼ exp
�log2(UD=LD)

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(UD)log(LD)

p
 !

: (3:17)

L0 is the critical value for the lower end of a 95% sceptical interval, such that

the resulting posterior distribution has a 95% interval that just includes 1. Thus

if one’s prior belief lies wholly within (L0, 1=L0) then one will not be convinced

by the evidence, and Matthews suggests a significant trial result is not ‘credible’

unless prior experience indicates that odds ratios lying outside this critical prior

interval are plausible. Figure 3.8 describes how this can be applied to assess-

ment of ‘significant’ odds ratios.

Applying Figure 3.8 to the GREAT study, for which LD ¼ 0:24,UD ¼ 0:97,
gives L0 ¼ 0:10. Hence, unless odds ratios more extreme than 0.1 can be

considered as plausible, the results of the GREAT study should be treated with
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caution. Since such values do not seem plausible, we do not find the GREAT

results ‘credible’. This is easily seen to be a characteristic of any ‘just significant’

results such as those observed in the GREAT trial: just a minimal amount of

prior scepticism is necessary to make the Bayesian analysis ‘non-significant’.

Examples of this approach to scepticism are given in Examples 3.8 and 3.13.

Example 3.8 Credibility: Sumatriptan trialresults

Matthews (2001) considers the results of an early study of subcutaneous
sumatriptan for migraine. This was a small study in which 79% of patients
receiving sumatriptan reported an improvement compared to 25% with
a placebo, with an estimated odds ratio in favour of sumatriptan of 11.4
and a wide 95% interval of 6.0 to 21.5: the likelihood is shown in Figure 3.9,
and we note that odds ratios greater than 1 favour the new

LD

U
D

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 3.8 Assessment of ‘credibility’ of findings. Suppose one had observed a
classical 95% interval (LD,UD) for an odds ratio. Then the value given in the graph is
L0, which is the lower end of a 95% prior interval centred on 1 expressing scepti-
cism about large differences. L0 is the critical value such that the resulting posterior
distribution has a 95% interval that just includes 1, and hence does not produce
‘convincing’ evidence. Thus, unless values for the odds ratio more extreme than L0
are judged plausible based on evidence external to the study, then the ‘significant’
conclusions should not be considered convincing.
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treatment since in this application the events are ‘positive’. It is reasonable
to ask whether such extreme results are really ‘too good to be true’. To use
Figure 3.8 or (3.17) we first need to invert to odds ratios in favour of
placebo, i.e. ORs less than 1: this leads to an estimated odds ratio of
0.088 with an interval (LD,UD) of (0.05, 0.17). Examination of Figure 3.8
reveals an approximate L0 of 0.8: substitution in (3.17) gives an exact value
of L0 ¼ 0:84. Transforming back to the original definition of the odds ratio
gives a critical prior interval of (1=L0, L0) ¼ (0:84, 1=0:84) ¼ (0:84, 1:19).
Figure 3.9 shows this critical prior and the resulting posterior distribution
whose 95% interval just includes OR ¼ 1.

If 95% of our prior belief lies within this critical interval, then the posterior
95% interval would not exclude OR ¼ 1 and we would not find the data
convincing. However, it would seem unreasonable in this context to rule out
on prior grounds advantages of greater than 19%, and hence we reject this
critical prior interval as being unreasonably sceptical, and accept the
results as ‘credible’.

Odds ratio of improvement on sumatriptan compared to placebo

0.8 1 3 5 7 8 9 12 14 16 19 22

Likelihood
Critical Prior
Posterior

2 4 6 10

Figure 3.9 Sumatriptan example: the critical sceptical prior distribution (dotted) is
centred on OR ¼ 1 and is sufficiently sceptical to make the resulting posterior dis-
tribution have a 95% interval that just includes 1, i.e. the shaded area is 0.025.
However, this degree of prior scepticism seems unreasonably extreme, and hence
we might judge that the clinical trial findings are ‘credible’.
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3.12 SEQUENTIAL USE OF BAYES THEOREM*

Suppose we observe data in two or more segments, say ym followed by yn. Then

after the first segment is observed our posterior distribution is given by (3.5):

p(�jym) / p(ymj�) p(�): (3:18)

This posterior becomes the prior distribution for the next use of Bayes the-

orem, so after the next segment yn is observed, the posterior conditioning on all

the data, i.e. p(�jyn, ym), obeys

p(�jyn, ym) / p(ynj�, ym) p(�jym): (3:19)

Combination of the two expressions (3.18) and (3.19) yields

p(�jyn, ym) / p(ynj�, ym) p(ymj�) p(�);

this can also be derived by considering a single use of Bayes theorem with data

yn, ym, but factorising the joint likelihood as p(yn, ymj�) ¼ p(ynj�, ym)p(ymj�).
In most situations the first term in (3.19) will not depend on ym (i.e. Yn is

conditionally independent of Ym given � (Section 2.2.3)) and so p(�jym)
simply becomes the prior for a standard Bayesian update using the likelihood

p(ynj�).

Example 3.9 GREAT (continued): Sequentialuse of Bayes theorem

Suppose the GREAT trial in Example 3.6 had a first analysis around half
way through the trial with the results shown in Table 3.7(b). The estimated
log(OR), its standard error and the effective number of events assuming
s ¼ 2 are calculated as in Example 2.5, and are presented in Table 3.7 with
the prior mean and effective number of events in the prior derived in
Example 3.6. Bayes theorem assuming normal likelihoods leads to the
posterior distribution shown in Table 3.7(c): as shown in (3.14), the effect-
ive number of events has been added to 236:7þ 18:1 ¼ 254:8, and the
posterior mean is the weighted average of the prior and likelihood esti-
mates (236:7��0:255)þ (18:1��0:654)=254:8 ¼ �0:283. The poster-
ior standard deviation is obtained as s=

ffiffiffiffiffiffiffiffiffiffiffiffi
254:8

p
¼ 0:125.

The second half of the study then provided the data shown in Table 3.7(d),
which made up the final totals of 23/144 under control and 13/163 under the
new treatment. The sequential use of Bayes theorem means that the

Sequential use of Bayes theorem 79

Chapter 3 An Overview of the Bayesian Approach 17.11.2003 4:24pm page 79



posterior following the first part of the study simply becomes the prior for the
second, and the final posterior distribution arises in the same manner as
described above.

Table 3.7 Possible results were the GREAT trial to have been analysed
midway: the ‘final’ posterior is based on using the posterior from the first part
of the trial as the prior for the second part, while the ‘combined’ posterior is
based on pooling all the data into the likelihood. The results only differ through
inadequacy of the normal approximation.

Stage Control
deaths/
cases

New
treatment
deaths/
cases

Estimated
log(OR)

Effective
no.

events

Estimated
SE

(a) Prior �0.255 236.7 0.130

(b) Data – first half 13/74 8/82 �0.654 18.1 0.471
(c) Interim Posterior �0.283 254.8 0.125

(d) Data – second half 10/74 5/81 �0.817 13.1 0.552
(e) ‘Final’ posterior �0.309 267.9 0.122

(f) Combined data 23/144 13/163 �0.736 30.5 0.362
(g) ‘Combined’

posterior
�0.309 267.2 0.122

We note that the results obtained by carrying out the analysis in two stages
(effective number of events 267.9) do not precisely match those obtained
by using the total data shown in Table 3.7(g) (effective number of events
267.2). This is due to the quality of the normal approximation to the
likelihood when such small numbers of events are observed.

3.13 PREDICTIONS

3.13.1 Predictions in the Bayesian framework

Making predictions is one of the fundamental objectives of statistical modelling,

and a Bayesian approach can make this task reasonably straightforward. Sup-

pose we wish to predict some future observations x on the basis of currently

observed data y. Then the distribution we require is p(xjy), and (2.8) shows we

can extend the conversation to include unknown parameters � by

p(xjy) ¼
Z

p(xjy, �) p(�jy) d�:

Now our current uncertainty concerning � is expressed by the posterior distri-

bution p(�jy), and in many circumstances it will be reasonable to assume that x
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and y are conditionally independent given �, and hence p(xjy, �) ¼ p(xj�). The
predictive distribution thus becomes

p(xjy) ¼
Z

p(xj�) p(�jy) d�,

the sampling distribution of x averaged over the current beliefs regarding the

unknown �. Provided we can do this integration, prediction becomes straightfor-

ward.

Such predictive distributions are useful in many contexts: Berry and Stangl

(1996a) describe their use in design and power calculations, model checking,

and in deciding whether to conduct a future trial, while Grieve (1988) provides

examples in bioequivalence, trial monitoring and toxicology. Applications of

predictions considered in this book include power calculations (Section 6.5),

sequential analysis (Section 6.6.3), health policy-making (Section 9.8.4), and

payback from research (Section 9.10).

3.13.2 Predictions for binary data*

Suppose � is the true response rate for a set of Bernoulli trials, and that the current
posterior distribution for � has mean � (note this might be a prior or posterior

distribution, depending on whether data has yet been observed). We intend to

observe a further n trials, and wish to predict Yn, the number of successes. Then

from the iterated expectation (2.13) given in Section 2.2.2 we know that

E(Yn) ¼ E�[E(Ynj�)] ¼ E�[n�] ¼ n�, (3:20)

which means, in particular, that the probability that the next observation

(n ¼ 1) is a success is equal to �, the current posterior mean of �. For example,

after the single observation in Example 3.2, the probability that the next case

shows a response is the current posterior mean of �, i.e.

P(Y1 ¼ 1) ¼ E(Y1) ¼�
j
�j p(�jjdata)

¼ (0:2� 0:1)þ (0:4� 0:2)þ (0:6� 0:3)þ (0:8� 0:4) ¼ 0:6:

If our current distribution for � is a conjugate Beta[a, b], we can write down an

expression for the exact predictive distribution for Yn: this is known as the beta-

binomial distribution and is given by

p(yn) ¼
G(aþ b)

G(a)G(b)

n

yn

� �
G(aþ yn) G(bþ n� yn)

G(aþ bþ n)
: (3:21)

From (3.20) and the fact that E(�) ¼ a=(aþ b), we immediately see that the

mean of this distribution is
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E(Yn) ¼ n
a

aþ b
:

We can also obtain the variance by using the expression for the iterated

variance (2.14) given in Section 2.2.2, to give

V(Yn) ¼
nab

(aþ b)2
aþ bþ n

(aþ bþ 1)
: (3:22)

We note two special cases of the beta-binomial distribution (3.21). First,

when a ¼ b ¼ 1, the current posterior distribution is uniform and the predictive

distribution for the number of successes in the next n trials is uniform over

0, 1, . . . , n. Second, when predicting the next single observation (n ¼ 1), (3.21)
simplifies to a Bernoulli distribution with mean a=(aþ b).

Suppose, then, we start with a uniform prior for � and then observe m

trials, all of which turn out to be positive, so that our posterior distribution

is now Beta[mþ 1, 1] (Section 3.6.2). Then the probability that the event

will occur at the next trial is m=(mþ 1). This is known as ‘Laplace’s law of

succession’, and it means that even if an event has happened in every case so

far (e.g. the sun rising every morning), we can still never be completely

certain that it will happen at the next opportunity (that the sun will rise

tomorrow).

Example 3.10 shows that the beta-binomial distribution can be used in

designing experiments allowing for uncertainty in the true response rate.

Example 3.10 Drug (continued):Makingpredictions forbinarydata

In Example 3.3 we assumed an initial prior distribution for a drug’s re-
sponse rate that could be approximated by a Beta[9.2,13.8], and then
observed 15/20 successes, leading to a posterior Beta[24.2,18.8] shown
in Figure 3.10(a). The mean of this posterior distribution is 0.56, and hence
from (3.20) this is the predictive probability that the next case responds
successfully.

If we plan to treat 40 additional cases, then the predictive distribution of the
total number of successes out of 40 is a beta-binomial distribution (3.21)
which is shown in Figure 3.10(b), and has mean 22.5 and standard devi-
ation 4.3.

Suppose we would consider continuing a development programme if the
drug managed to achieve at least a further 25 successes out of these 40
future trials. The chance of achieving this number can be obtained by
summing the probabilities in the right-hand tail of Figure 3.10(b), and
comes to 0.329. In Example 3.15 we shall contrast this exact analysis
with an approximation using simulation methods.
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(a) Posterior
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Figure 3.10 (a) is the beta posterior distribution after having observed 15 suc-
cesses in 20 trials, (b) is the predictive beta-binomial distribution of the number of
successes Y in the next 40 trials.

3.13.3 Predictions for normal data

Predictionsareparticularly easywhenweareable toassumenormaldistributions.

For example, suppose we assume a normal sampling distribution Yn � N[�,�2=n]
for some future dataYn, and a prior distribution � � N[�,�2=n0].Wewish tomake

predictions concerning future values of Yn, taking into account our uncertainty

about itsmean �.WemaywriteYn ¼ (Yn � �)þ �, and so can considerYn as being

the sum of two independent quantities:Yn � � � N[0, �2=n], and � � N[�, �2=n0].
Now in Section 2.3 we observed that the sum of two independent normal quan-

tities was normal with the sum of the means and the variances, and hence Yn will

therefore have a predictive distribution

Yn � N �,�2 1

n
þ 1

n0

� �� �
: (3:23)
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We could also derive (3.23) using the expressions for the iterated expectation

(2.13) and variance (2.14) given in Section 2.2.2. Specifically,

E(Yn) ¼ E�[E(Ynj�)] ¼ E�[�] ¼ �,

V(Yn) ¼ V�[E(Ynj�)]þ E�[V(Ynj�)] ¼ V�[�]þ E�[�
2=n] ¼ �2(1=n0 þ 1=n):

Thus, when making predictions, we add variances and so increase our uncer-

tainty. This is in direct contrast to combining sources of evidence using Bayes

theorem, when we add precisions and decrease our uncertainty (Section 3.7).

The use of this expression for comparison of prior distributions with data is

described in Section 5.8, and for sample-size determination in Section 6.5.

Now suppose we had already observed data ym and hence our distribution is

� � N[(n0�þmym)=(n0 þm),�2=(n0 þm)]. Then

Ynjym � N
n0�þmym

n0 þm
,�2 1

n0 þm
þ 1

n

� �� �
: (3:24)

The use of this expression is illustrated in Example 3.11, and we shall see in

Section 6.6.3 how to adapt these methods to predict the chance of a ‘significant

result’ in a clinical trial setting.

Example 3.11 GREAT (continued): Predictionsof continuing the trial

Suppose we were considering extending the GREAT trial to include a
further 100 patients on each arm. What would we predict the observed
OR in those future patients to be, with and without using the pre-trial prior
information? It is important to remember that the precision with which the
OR can be estimated does not depend on the actual number randomised
(100 in each arm), but on the number of events (deaths) observed.

We assume the observed log(OR) in those future patients to be
Yn � N[y, s2=n], where the future number of events is n and s ¼ 2: with
100 patients in each arm we can expect n � 20 events, given the current
mortality rate of around 10%. From Example 3.6, the current posterior
distribution is y � N[� 0:31, s2=(n0 þm)] where n0 þm ¼ 267:2. Hence
from (3.24) the predictive distribution of log(OR) has mean �0:31 and
variance s2(1=267:2þ 1=20:0) ¼ s2=18:6 ¼ 0:21 ¼ 0:462. This is shown
in Figure 3.11: the great uncertainty in future observations is apparent.

Using the data from the trial alone is equivalent to setting n0 ¼ 0 and using a
‘flat’ prior, and hence the current posterior distribution is based on the
likelihood alone, y � N[�0:74, s2=m], where m ¼ 30:5. Hence, ignoring
the pre-trial prior based on the expert opinion, the predictive distribution of
log(OR) has mean �0:74 and variance s2(1=30:5þ 1=20:0) ¼ s2=12:1
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¼ 0:33 ¼ 0:582. Figure 3.11 shows that this predictive distribution is consid-
erably flatter than when the prior is included.

We can use the predictive distributions to calculate the chance of
any outcome of interest, say observing an OR of less than 0.50 in the
future component of the trial. Using the fairly sceptical prior information,
this probability is p(Yn < log (0:50)jym) ¼ F((�0:69þ 0:31)=0:46) ¼
F(�0:83) ¼ 0:21, whereas if the prior distribution is ignored this rises to
F((�0:69þ 0:74)=0:58) ¼ F(0:08) ¼ 0:53. So our prior opinion leads us to
doubt that the current benefit will be observed in future patients if the trial is
extended.

Predicted odds ratio of 30 day mortality on home therapy to control

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1 1.2 1.4

With pre-trial prior information

Without pre-trial prior information

Figure 3.11 Predictive distributions for observed OR in a future 100 patients
randomised to each arm in the GREAT trial, assuming around 20 events will be
observed: with and without pre-trial prior information.

3.14 DECISION-MAKING

The appropriate role for formal decision theory in health-care evaluation is the

subject of a long and continuing debate but is not the primary emphasis of this

book. This section presents the basic ideas of which some are developed in later

chapters, but for a full discussion we refer to classic texts such as DeGroot
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(1970) and Lindley (1975), while Parmigiani (2002) provides a detailed expos-

ition in a medical context.

Suppose we wish to make one of a set of decisions, and that we are willing to

assess some value u(d,�), known as a utility, of the consequences of taking each

decision d when � is the true unknown ‘state of nature’. If we have observed

some data y and our current probability distribution for � is p(�jy), then our

expected utility of taking decision d is denoted

E(d) ¼
Z

u (d, �) p(�jy) d�,

where the integral is replaced by a sum if � is discrete. The theory of optimal

decision-making says we should choose the decision dopt that maximises E(d).
For example, suppose our unknown ‘state of nature’ comprises two hypoth-

eses H0 and H1 with current posterior probabilities p(H0jy) and p(H1jy) respect-
ively, and assume we face two possible decisions d0 and d1: we would choose d0
if we believed H0 to be true and d1 if we believed H1. Let u(d0,H0) be the utility of

taking decision d0 when H0 is true, and similarly define the other utilities. Then

the theory of maximising expected utility states that we should take decision d0
if E(d0) > E(d1), which will occur if

u(d0,H0)p(H0jy)þ u(d0,H1)p(H1jy) > u(d1,H0)p(H0jy)þ u(d1,H1)p(H1jy),

which can be rearranged to give

p(H0jy)
p(H1jy)

>
u(d1,H1)� u(d0,H1)

u(d0,H0)� u(d1,H0)
: (3:25)

This inequality has an intuitive explanation. The numerator on the right-hand

side is u(d1,H1)� u(d0,H1), the additional utility involved in taking the correct

decision when H1 turns out to be the correct hypothesis – it could also be

considered as the potential regret, in that it is the potential loss in utility when

we erroneously decide on H0 instead of H1. The denominator similarly acts as

the potential regret when H0 is true. Hence (3.25) says we should only take

decision d0 if the posterior odds in favour of H0 are sufficient to outweigh any

extra potential regret associated with incorrectly rejecting H1.

An alternative framework for using the principle of maximising expected

utility occurs when our utility depends on future events, and our choice of action

changes the probability of those events occurring. Suppose decision di can be

taken at cost ci, and leads to a probability pi of an adverse event Y ¼ 0 or 1

occurring with utility UY . Then the expected utility of taking decision i is

E(di) ¼ piU1 þ (1� pi)U0 � ci,
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and so, for example, d0 will be preferred to d1 if

p0U1 þ (1� p0)U0 � c0 > p1U1 þ (1� p1)U0 � c1:

Rearranging terms leads to a preference for d0 if

p1 � p0 >
c0 � c1

U0 � U1

(3:26)

where the denominator U0 � U1 is positive since the event is considered un-

desirable. This is clearly obeyed if d0 both costs less (c0 < c1) and reduces the risk
of Y occurring (p0 < p1), since the right-hand side of (3.26) is negative and the

left-hand side is positive. However, if d0 costs more than d1, then the right-hand

side of (3.26) is positive, and d0 will only be preferred if it reduces the risk by a

sufficient quantity. We note that the decision depends on the risk difference

p1 � p0, rather than a relative measure such as the odds ratio, and this led

Ashby and Smith (2000) to show that (3.26) can be expressed as

NNT ¼ 1

p1 � p0
<

U0 � U1

c0 � c1
: (3:27)

NNT denotes the ‘number needed to treat’ in order to prevent one adverse

event (the expected number of events prevented when treating N individuals

according to d0 instead of d1 is N(p1 � p0), and hence one expects to prevent

one event when treating N ¼ 1=(p1 � p0)). So, if we are willing to assess

the necessary costs and utilities to place in (3.27), we obtain a threshold

for adopting a new treatment based on the NNT, without regard to any

measure of ‘significance’. Example 3.12 provides a somewhat stylised

example.

Example 3.12 Neural tube defects: Making personal decisions about
preventative treatment

Ashby and Smith (2000) consider a somewhat simplified example, but one
that nevertheless illustrates the power (and the difficulties) of carrying out a
formal decision analysis with utilities.

They consider a couple wishing to try and become pregnant but faced with
the decision whether to take folic acid supplements to reduce the risk of a
neural tube defect (NTD), such as spina bifida or anencephaly. Let d0, d1
denote respectively the decisions to take and not to take supplementation,
with respective costs c0, c1, and let p0, p1 be the probabilities of a foetus
having an NTD following each of the two decisions. Finally, let U0, U1 be
the utilities of having a child without and with an NTD, respectively. The
problem is structured as a decision tree in Figure 3.12.
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Supplement

Decision Event? Utility of consequences

No Supplement

NTD

NTD

No NTD

No NTD

U1 − c0

U0 − c01 − p0

1 − p1

U1 − c1p1

p0

d0

d1
U0 − c1

Figure 3.12 Decision tree for folic acid supplementation decision: the square
node represents a decision, circular nodes represent chance events, and values
at the end of branches represent utilities.

Inequality (3.26) can be rearranged to show that the couple should choose
supplementation (d1) if

U0 � U1 >
c0 � c1
p1 � p0

, (3:28)

and the issue becomes one of assigning reasonable values to these
quantities. Estimates of p0 and p1 may be obtained from randomised trial
and epidemiological evidence. Ashby and Smith (2000) provide the results
of the sole available clinical trial of folic acid supplementation (carried out
on couples who had already had a previous pregnancy resulting in an
NTD): 21/602 randomised to placebo had pregnancies with an NTD, com-
pared with 6/593 with supplementation. This corresponds to estimates of
p0 ¼ 0:010, p1 ¼ 0:035, NNT ¼ 1=(p1 � p0) ¼ 40:4 and OR ¼ 0.30. Sup-
pose such a couple are deciding whether to take supplementation at a cost
of c0 � c1 ¼ £c; then (3.28) shows they should take the supplementation if
the ‘disutility’ U0 � U1 of an NTD is greater than around 40c. c may be
costed in money terms if the couple will have to pay for a course of tablets,
but Ashby and Smith (2000) suggest this may only be around £10, leading
to a threshold of around £400. The problem lies in expressing the ‘disutility’
in £s.

This brings into focus the importance of identifying the appropriate deci-
sion-maker whose utilities are to be taken into account. If making public
policy decisions regarding supplementation, it is reasonable that preven-
tion of an NTD is worth more than around 40c, even if the couple decide to
terminate the pregnancy. However, from the couple’s point of view, it may
be best to think in terms of the utility U0 of a ‘healthy baby’. If this is of the
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order of £1 million, then they should take supplementation if the utility of an
NTD is less than £999 600, which would suggest a fairly clear-cut decision.
The crucial quantity is seen to be S ¼ c=U0, the cost of supplementation in
terms of ‘healthy baby’ equivalents. Then the decision threshold (3.28)
reduces to checking if

U1

U0
< 1� (S� NNT):

Thus the previous analysis had S � 0:000 01, NNT � 40, and so supple-
mentation is preferred if an NTD is valued at less than 0.9996 of a healthy
baby.

Ashby and Smith (2000) also consider a couple with no previous history
of an NTD, and they cite an incidence rate of 3.3 per 1000 pregnancies in a
non-supplemented population. Taking this value as p0 ¼ 0:0010, and as-
suming the trial odds ratio applies to this group, leads to an estimate of
p1 ¼ 0:0033, so that p1 � p0 ¼ 0:0023, NNT ¼ 435. We should therefore
prefer supplementation if U1=U0 < 1� 0:000 01� 435 � 0:996. This
threshold is again likely to be met, and the costs would need to become
very substantial before the threshold was crossed into not preferring sup-
plementation.

The use of Bayesian ideas in decision-making is a huge area of research and

application, in which attention is more focused on the utility of consequences

than the use of Bayesian methods to revise opinions. This activity blends

naturally into cost-effectiveness analysis, but nevertheless the subjective inter-

pretation of probability is essential, since the expressions of uncertainty required

for a decision analysis can rarely be based purely on empirical data. There is a

long history of attempts to apply this theory to medicine, and in particular there

is a large literature on decision analysis, whether applied to the individual

patient or for policy decisions. The journal Medical Decision Making contains

an extensive collection of policy analyses based on maximising expected utility,

some of which particularly stress the importance of Bayesian considerations.

Any discussion of utility assessment must take careful account of the context in

which the analysis is taking place, and our discussion is deferred until the

chapter on cost-effectiveness and policy (Chapter 9).

There has been a long debate on the use of loss functions (defined as the

negative of utility), in parallel to that concerning prior distributions, and some

have continually argued that the design, monitoring and analysis of a study

must explicitly take into account the consequences of eventual decisions (Berry,

1993). It is important to note that there is also a frequentist theory of decision-

making that uses loss functions, but does not average with respect to prior or
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posterior distributions: the decision-making strategy is generally ‘minimax’

(DeGroot, 1970), where the loss is minimised whatever the true value of

the parameter might be. This can be thought of as assuming the most pessi-

mistic prior distribution. Thus ‘ideological’ approaches employing all combin-

ations of the use of prior distributions and/or loss functions are possible: this

is further discussed in Section 4.1 and, in the context of clinical trials, in

Section 6.2.

It is particularly important to emphasise that the theory of optimal decision-

making depends solely on the expected benefit, and hence any measures of

uncertainty such as intervals or P-values are strictly speaking irrelevant,

whether conducting clinical trials (Sections 6.2, 6.6.4 and 6.10) or policy-

making (Chapter 9). An exception is when a decision can be made to obtain

further information, and these ideas can be used for assessing the payback from

research (Section 9.10).

3.15 DESIGN

Bayesian design of experiments can be considered as a natural combination of

prediction and decision-making, in that the investigator is seeking to choose

a design which they predict will achieve the desired goals. Nevertheless Baye-

sian design tends to be technically and computationally challenging (Chaloner

and Verdinelli, 1995) except possibly in situations such as choosing the size of a

clinical trial (Section 6.5).

Sequential designs present a particular problem known as ‘backwards induc-

tion’, in which one must work backwards from the end of the study, examine all

the possible decision points that one might face, and optimise the decision

allowing for all the possible circumstances in which one might find oneself.

This can be computationally very demanding since one must consider what one

would do in all possible future eventualities (Section 6.6.4), although approxi-

mations can be made such as considering only a single step ahead. A natural

application is in dose-finding studies (Section 6.10). Early phases of clinical

trials have tended to attract this approach: for example, Brunier and Whitehead

(1994) consider the balancing of costs of experimentation and errors in treat-

ment allocation (Section 6.12).

3.16 USE OF HISTORICAL DATA

Historical evidence has traditionally been used to help in the design of experi-

ments and when pooling data in a meta-analysis, but Bayesian reasoning gives

it a formal role in many aspects of evaluation. Here we introduce a brief

taxonomy of ways in which historical data may be incorporated, which will

be further developed in contexts such as the derivation of prior distributions
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(Section 5.4), the use of historical controls in clinical trials (Section 6.9), the

adjustment of observational studies for potential biases (Section 7.3) and the

synthesis of multiple sources (Section 8.4).

We identify six broad relationships that historical data may have with current

observations, ranging from being completely irrelevant to being of equal stand-

ing, with a number of possible means of ‘downweighting’ in between. There is

an explicit reliance on judgement as to which is most appropriate in any

situation.

(a) Irrelevance. The historical data provides no relevant information.

(b) Exchangeable. Current and past studies are ‘similar’ in the sense described in

Section 3.17, and so their parameters can be considered exchangeable –

this is a typical situation in a meta-analysis, and standard hierarchical

modelling techniques can be adopted.

(c) Potential biases. Past studies are biased, either through lack of quality

(internal bias) or because the setting is such that the studies are not

precisely measuring the underlying quantity of interest (external bias), or

both. The extent of the potential bias may be modelled and the historical

results appropriately adjusted.

(d) Equal but discounted. Past studies may be assumed to be unbiased, but their

precision is decreased in order to ‘discount’ past data.

(e) Functional dependence. The current parameter of interest is a logical function

of parameters estimated in historical studies.

(f) Equal. Past studies are measuring precisely the parameters of interest and

data can be directly pooled – this is equivalent to assuming exchangeability

of individuals.

A fuller graphical and technical description of these stages is provided in

Section 5.4.

3.17 MULTIPLICITY, EXCHANGEABILITY AND

HIERARCHICAL MODELS

Evaluation of health-care interventions rarely concerns a single summary statis-

tic. ‘Multiplicity’ is everywhere: clinical trials may present issues of ‘multiple

analyses of accumulating data, analyses of multiple endpoints, multiple subsets

of patients, multiple treatment group contrasts and interpreting the results of

multiple clinical trials’ (Simon, 1994a). Observational data may feature multiple

institutions, and meta-analysis involves synthesis of multiple studies.

Suppose we are interested in making inferences on many parameters

�1, . . . , �K measured on K ‘units’ which may, for example, be true treatment

effects in subsets of patients, multiple institutions, or each of a series of trials. We

can identify three different assumptions:
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1. Identical parameters. All the �s are identical, in which case all the data can be

pooled and the individual units ignored.

2. Independent parameters. All the �s are entirely unrelated, in which case the

results from each unit can be analysed independently (e.g. using a fully

specified prior distribution within each unit).

3. Exchangeable parameters. The �s are assumed to be ‘similar’ in the following

sense. Suppose we were blinded as to which unit was which, and all we had

was a label for each, say, A, B, C and so on. Suppose further that our prior

opinion about any particular set of �s would not be affected by only knowing

the labels rather than the actual identities, in that we have no reason to

think specific units are systematically different. A set of random variables

Y1, . . . ,Yn with this property was termed ‘exchangeable’ in Section 3.4,

equivalent, broadly speaking, to assuming the variables were independently

drawn from some parametric distribution with a prior distribution on the

parameter. The results of Section 3.4 can be equally applied to exchangeable

parameters �1, . . . , �K , and hence under broad conditions an assumption of

exchangeable units is mathematically equivalent to assuming the �s are

drawn at random from some population distribution, just as in a traditional

random-effects model. This can be considered as a common prior for all

units, but one with unknown parameters. Note that there does not need to

be any actual sampling – perhaps these K units are the only ones that exist –

since the probability structure is a consequence of the belief in exchangeabil-

ity rather than a physical randomisation mechanism. Nor does the distribu-

tion have to be something traditional such as a normal (although we shall

generally use that assumption in our examples): heavy-tailed or skewed

distributions are possible, or ‘partitions’ that cluster units into groups that

are equal or similar. We emphasise that an assumption of exchangeability is

a judgement based on our knowledge of the context (Section 5.7).

If a prior assumption of exchangeability is considered reasonable, a Bayesian

approach to multiplicity is thus to integrate all the units into a single model, in

which it is assumed that �1, . . . , �K are drawn from some common prior

distribution whose parameters are unknown: this is known as a hierarchical

or multi-level model.

We illustrate these ideas assuming normal distributions. In each unit we shall

observe a response Yk assumed to have a normal likelihood

Yk � N[�k, s
2
k ]: (3:29)

The three situations outlined above are then treated as follows.

1. Identical parameters (pooled effect). We assume all the �k are identical and

equal to a common treatment effect � and, therefore, from (3.29),

Yk � N[�, s2k ]:
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1. Transforming to the notation s2k ¼ �2=nk, assuming � � N[0, �2=n0] and
sequential application of Bayes theorem, (3.14) gives a ‘pooled’ posterior

distribution for � (and hence each of the �k) of

� � N
�knkyk

n0 þ�knk
,

�2

n0 þ�knk

� �
; (3:30)

1. the posterior mean for � is equivalent to an overall sample mean, assuming

the prior contributes n0 ‘imaginary’ observations of 0. As n0 ! 0 the prior

distribution on � becomes uniform and the posterior for � tends to

� � N
�knkyk

�knk
,

�2

�knk

� �
: (3:31)

1. Reverting to the original notation s2k ¼ �2=nk reveals that

� � N
�kyk=s

2
k

�k1=s
2
k

,
1

�k1=s
2
k

� �
, (3:32)

1. where the posterior mean is simply the classical pooled estimate �̂�, which

is the average of the individual estimates, each weighted inversely by

its variance. A classical test for heterogeneity, i.e. whether it is reasonable

to assume that all the trials are measuring the same quantity, is provided

by

Q ¼�k

nk

�2
(yk � �̂�)2, (3:33)

1. or equivalently Q ¼�k(yk � �̂�)2=s2k , which has a �2
K�1 distribution under the

null hypothesis of homogeneity. It is well known that this is not a very

powerful test (Whitehead, 2002), and so absence of a significant Q should

not necessarily mean that the trial are homogenous.

2. Independent parameters (fixed effects). In this case each �k is estimated totally

without regard for the others: assuming a uniform prior for each �k and the

likelihood (3.29) gives the posterior distribution

�k � N[yk,s
2
k ], (3:34)

1. which is simply the normalised likelihood.

3. Exchangeable parameters (random effects). The unit means �k are assumed to

be exchangeable, and to have a normal distribution

�k � N[�,t2], (3:35)
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1. where � and t2 are ‘hyperparameters’ for the moment assumed known.

After observing yk, Bayes theorem (3.15) can be rearranged as

�kjyk � N[Bk�þ (1� Bk)yk, (1� Bk)s
2
k ], (3:36)

1. where Bk ¼ s2k=(s
2
k þ t2) is the weight given to the prior mean. It can be seen

that the pooled result (3.32) is a special case of (3.36) when t2 ¼ 0, and the

independent result (3.34) a special case when t2 ¼ 1.

1. An exchangeable model therefore leads to the inferences for each unit

having narrower intervals than if they are assumed independent, but shrunk

towards the prior mean response. This produces a degree of pooling, in

which an individual study’s results tend to be ‘shrunk’ by an amount

depending on the variability between studies and the precision of the indi-

vidual study. Bk controls the ‘shrinkage’ of the estimate towards �, and the

reduction in the width of the interval for �k. If we again use the notation

s2k ¼ �2=nk, t2 ¼ �2=n0, then Bk ¼ n0=(n0 þ nk), clearly revealing how the

degree of shrinkage increases with the relative information in the prior

distribution compared to the likelihood.

1. The unknown hyperparameters � and t may be estimated directly from

the data – this is known as the ‘empirical Bayes’ approach as it avoids

specification of prior distributions for � and t. We shall not detail the variety

of techniques available as they form part of classical random-effects meta-

analysis (Sutton et al., 2000; Whitehead, 2002). However, the simplest is the

‘methods-of-moments’ estimator (DerSimonian and Laird, 1986)

t̂t2 ¼ Q� (K � 1)

N ��kn
2
k=N

, (3:37)

1. where Q is the test for heterogeneity given in (3.33), and N ¼�knk; if

Q < (K � 1), then t̂t2 is set to 0 and complete homogeneity is assumed.

This estimator is used in Example 3.13 and in the Exercises, although we

describe the use of ‘profile-likelihood’ in Section 3.18.

1. Alternatively, � and t2 may be given a prior distribution (known as the

‘full Bayes approach’) and this is done later in the book, taking particular

care in the choice of a prior distribution for the between-unit variation t
(Section 5.7.3). However, the results from either an empirical or full Bayes

analysis will often be similar provided each unit is not too small and there are

a reasonable number of units.

The use of hierarchical models is later discussed with respect to subset

analysis (Section 6.8.1), N-of-1 studies (Section 6.11), institutional comparisons

(Section 7.4) and meta-analysis (Section 8.2).
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Example 3.13 Magnesium:Meta-analysis usingascepticalprior

Reference: Higgins and Spiegelhalter (2002).

Intervention: Epidemiology, animal models and biochemical studies sug-
gested intravenous magnesium sulphate may have a protective effect
after acute myocardial infarction (AMI), particularly through preventing
serious arrhythmias. A series of small randomised trials culminated in a
meta-analysis (Teo et al., 1991) which showed a highly significant
(P < 0:001) 55% reduction in odds of death. The authors concluded that
‘further large scale trials to confirm (or refute) these findings are desirable’,
and the LIMIT-2 trial (Woods et al., 1992) published results showing a
24% reduction inmortality in over 2000 patients. An editorial inCirculation
subtitled ‘An effective, safe, simple and inexpensive treatment’ (Yusuf et
al., 1993) recommended further trials to obtain ‘a more precise estimate
of the mortality benefit’. Early results of the massive ISIS-4 trial pointed,
however, to a lack of any benefit, and final publication of this trial on over
58 000 patients showed a non-significant adverse mortality effect of mag-
nesium. ISIS-4 foundnoeffect in any subgroupsandconcluded that ‘Over-
all, there does not now seem to be any good clinical trial evidence for the
routine use of magnesium in suspected acute MI’ (Collins et al., 1995).

Aimof study: To investigate how a Bayesian perspective might have influ-
enced the interpretation of the published evidence on magnesium sul-
phate in AMI available in 1993. In particular, what degree of ‘scepticism’
would have been necessary in 1993 not to be convinced by the meta-
analysis reported by Yusuf et al. (1993)?

Study design: Meta-analysis of randomised trials, allowing for prior distri-
butions that express scepticism about large effects.

Outcome measure: Odds ratio for in-hospital mortality, with odds ratios
less than 1 favouring magnesium.

Statisticalmodel: All three approaches to modelling the multiple trials are
investigated: (a) a ‘pooled’ analysis assuming identical underlying effects;
(b) a fixed-effects analysis assuming independent, unrelated effects; and
(c) a random-effects analysis assuming exchangeable treatment effects.
For the last we assume a normal hierarchical model on the log(OR) scale,
as given by (3.29) and (3.35). An empirical Bayes analysis is adopted
using estimates of the overall mean m and the between-study standard
deviation t, in order to use the normal posterior analysis given by (3.36).

Prospective analysis?: No.

Prior distribution: For the pooled- and fixed-effects analysis we assume a
uniform prior for the unknown effects on the log(OR) scale. The empirical
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Bayes analysis does not use any prior distributions on the parameters m
and t (although the estimate for m is equivalent to assuming a uniform
prior on the log(OR) scale). Sensitivity analysis is conducted using
‘sceptical’ priors for m centred on ‘no effect’.

Loss functionordemands: None.

Computation/software: Conjugate normal analysis.

Evidence fromstudy: Table 3.8 gives the raw data and the estimated log-
odds ratios yk and their standard deviations sk (Section 2.4.1). The
classical test for heterogeneity Q (3.33) is not significant (9.35 on 7
degrees of freedom), and the method-of-moments estimate for t is
0:29 (3.37). Figure 3.13 shows the profile log(likelihood) which summar-
ises the support from the data for different values of t, and is derived
using the techniques described in Section 3.18.2: superimposed on this
plot are the changing parameter estimates for different values of t. The
maximum likelihood estimate is t̂t ¼ 0 although, from the discussion in
Section 2.4.1, values for t with a profile log(likelihood) above
�1:962=2 � �2 might be considered as being reasonably supported by
the data. t̂t ¼ 0 would not appear to be a robust choice as an estimate
since non-zero values of t, which are well supported by the data, can
have a strong influence on the conclusions. We shall assume, for illus-
tration, the method-of-moments estimator t̂t ¼ 0:29.

The results are shown in Figure 3.14. The standard pooled-effect
analysis estimates an odds ratio OR ¼ 0:67 (95% interval from 0.52 to
0.86). In the random-effects analysis the estimates of individual trials are
‘shrunk’ towards the overall mean by a factor given by Bk in Table 3.8,
and individual trials have narrower intervals. The estimate of the ‘aver-
age’ effect is less precise, but still is ‘significantly’ less than 1: estimated
odds ratio 0.58 (95% interval from 0.38 to 0.89).

Table 3.8 Summary data for magnesium meta-analysis, showing estimated odds ratios,
log(odds ratios) (yk), standard deviations for log(odds ratios) (sk), the effective number of events
assuming s ¼ 2 (nk), and shrinkage coefficients Bk ¼ s2k=(s

2
k þ t̂t2): t̂t is taken to be 0.29.

Trial Magnesium
group

Control
group

Estimated
log(odds
ratio) yk

Estimated
SD sk

Effective
no.

events nk

Shrinkage
Bk

Deaths Patients Deaths Patients

Morton 1 40 2 36 �0.65 1.06 3.6 0.93
Rasmussen 9 135 23 135 �1.02 0.41 24.3 0.65
Smith 2 200 7 200 �1.12 0.74 7.4 0.86
Abraham 1 48 1 46 �0.04 1.17 2.9 0.94
Feldstedt 10 150 8 148 0.21 0.48 17.6 0.72
Shechter 1 59 9 56 �2.05 0.90 4.9 0.90
Ceremuzynski 1 25 3 23 �1.03 1.02 3.8 0.92
LIMIT-2 90 1159 118 1157 �0.30 0.15 187.0 0.19
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Figure 3.13 Profile log(likelihood) of t, showing reasonable support for values of t
between 0 and 1. Also shown are individual and overall estimates of treatment
effects for different values of t: although t ¼ 0 is the maximum likelihood estimate,
plausible values of t have substantial impact on the estimated treatment effects.

Bayesianinterpretation: This random-effects analysis is not really a Baye-
sian technique, as it uses no prior distributions for parameters and
conclusions are reported in the traditional way. One could, however,
treat this as an approximate Bayesian analysis having assumed ex-
changeability between treatments and uniform priors on unknown par-
ameters.

Sensitivity analysis: A meta-analysis using uniform prior distributions,
whether a pooled- or random-effects analysis, finds a ‘significant’ benefit
from magnesium. The apparent conflict between this finding and the
results of the ISIS-4 mega-trial have led to a lengthy dispute, briefly
summarised in Higgins and Spiegelhalter (2002). We shall return to
this issue in Example 8.1, but for the moment we consider the robust-
ness of the meta-analysis results to the choice of prior distribution. In
particular, we use the credibility analysis described in Section 3.11 to
check whether the findings are robust to a reasonable expression of prior
scepticism concerning large benefits. We first consider the pooled an-
alysis. From Figure 3.8, we can see that in order to find unconvincing the
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favours magnesium  <-       Mortality odds ratio          ->  favours placebo

Figure 3.14 Fixed- (solid lines) and random-effects (dashed lines) meta-analysis
of magnesium data assuming t ¼ 0:29, leading to considerable shrinkage of the
estimates towards a common value.

pooled analysis (95% interval from 0.52 to 0.86), a sceptical prior with a
lower 95% point at around 0.80 would be necessary. Figure 3.15 dis-
plays the pooled likelihood, and the ‘critical’ sceptical prior distribution
that leads to a posterior tail area of 0.025 above OR ¼ 1. This prior is
N[0, 22=421], and hence is equivalent evidence to a trial in which 421
events have been observed, with exactly the same number in each arm.
This seems a particularly extreme form of scepticism in that it essentially
rules out all effects greater than around 20% on prior grounds. However,
for the random-effects analysis (95% interval from 0.38 to 0.89), the
lower end of the sceptical interval would need to be 0.6: the likelihood,
‘critical’ sceptical prior and posterior are shown in Figure 3.16. It might
seem reasonable to find odds ratio below 0.6 extremely surprising, and
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favours magnesium  <-            Mortality odds ratio              ->  favours placebo
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Figure 3.15 Critical sceptical prior for the pooled analysis, just sufficient to make
posterior 95% interval include 1. This degree of scepticism seems unreasonably
severe, as it equivalent to having already observed 421 events – 210.5 on each
treatment.

hence a random-effects analysis and a reasonably sceptical prior render
the meta-analysis somewhat unconvincing. This finding is reinforced by
the comment by Yusuf (1997) that ‘if one assumed that only moderate
sized effects were possible, the apparent large effects observed in the
meta-analysis of small trials with magnesium . . . should perhaps have
been tempered by this general judgment. If a result appears too good to
be true, it probably is.’

Comments: One vital issue is that the maximum likelihood estimate of t
would lead to assuming a pooled estimate for the odds ratio, whereas
there is reasonable evidence for considerable heterogeneity. A simplistic
approach in which the maximum likelihood estimate is assumed to be
true is therefore likely to substantially overstate the confidence in the
conclusions. We note that we might question the exchangeability as-
sumption of a large trial compared with many small ones, and this is
further discussed in Higgins and Spiegelhalter (2002).
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favours magnesium  <-            Mortality odds ratio              ->  favours placebo
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Figure 3.16 Critical sceptical prior for random-effects analysis, just sufficient to
make posterior 95% interval include 1. This degree of scepticism appears quite
reasonable, corresponding to 58 events (29 in each arm) in a previous ‘imaginary
trial’.

3.18 DEALING WITH NUISANCE PARAMETERS*

3.18.1 Alternative methods for eliminating nuisance
parameters*

In many studies we are focused on inferences on a single unknown quantity �,
such as the average treatment effect in a population of interest. However,

there will almost always be additional unknown quantities which influence

the data we observe but which are not of primary interest: these are known as

‘nuisance’ parameters and are a major issue in statistical modeling. Examples

include the variance of continuous quantities, coefficients measuring the

influence of background risk factors, baseline event rates in control groups,

and so on.

Traditional statistical methods are primarily based on analysis of the likeli-

hood for �, and a number of methods have been developed to eliminate the

nuisance parameters from this likelihood. These include the following:
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1. Restricting attention to an estimator of � whose likelihood (at least approxi-

mately) does not depend on the nuisance parameters. This technique is used

extensively in this book in the form of approximate normal likelihoods for

unknown odds ratios, hazard ratios and rate ratios (Section 2.4).

2. Estimating the nuisance parameters and ‘plugging in’ their maximum likeli-

hood estimates into the likelihood for �. This ignores the uncertainty con-

cerning the nuisance parameters, and may be inappropriate if the number of

nuisance parameters is large. In hierarchical modelling we might use this

technique for the hyperparameters of the population distribution, and we

saw in Section 3.17 that this is known as the empirical Bayes approach.

Example 3.13 showed that conditioning on the maximum likelihood esti-

mate might lead us to ignore an important source of uncertainty.

3. By conditioning on some aspect of the data that is taken to be uninformative

about �, forming a ‘conditional likelihood’ which depends only on �.
4. Forming a ‘profile likelihood’ for �, obtained by maximising over the nuis-

ance parameters for each value of �. This was used in Example 3.13 and is

illustrated in Section 3.18.2, although here it is not applied to the parameter

of primary interest.

Each of these techniques leads to a likelihood that depends only on �, and which

could then be combined with a prior in a Bayesian analysis.

However, a more ‘pure’ Bayesian approach would be as follows:

1. Place prior distributions over the nuisance parameters.

2. Form a joint posterior distribution over all the unknown quantities in the

model.

3. Integrate out the nuisance parameters to obtain the marginal posterior

distribution over �.

This approach features in our examples when we do not assume normal

approximations to likelihoods, such as modelling control group risks for bino-

mial data in Examples 8.2 and 9.4, and control group rates for Poisson data in

Example 8.3. We also consider full Bayesian modelling of sample variances for

normal data in Examples 6.10 and 9.2. In other hierarchical modelling

examples we shall generally adopt an approximation at the sampling level,

but a full Bayesian analysis of the remaining nuisance parameter: the be-

tween-group standard deviation t.
It is important to emphasise that sensitivity analysis of prior distributions

placed on nuisance parameters is important, as apparently innocuous choices

may exert unintended influence. For this reason it may be attractive to carry

out a hybrid strategy of using traditional methods to eliminate nuisance param-

eters before carrying out a Bayesian analysis on � alone, although we might

wish to be assured that this was a good approximation to the full Bayesian

approach.
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3.18.2 Profile likelihood in a hierarchical model*

Consider the hierarchical model described in Section 3.17 and Example 3.13 in

which

Yk � N[�k,s
2
k ], �k � N[�,t2]:

The hyperparameters � and t2 will generally be unknown. From (3.24) the

predictive distribution of Yk, having integrated out �k, is

Yk � N[�, s2k þ t2]:

Let the precision wk ¼ 1=(s2k þ t2) be the ‘weight’ associated with the kth study.

Then the joint log(likelihood) for � and t is an arbitrary constant plus

L(�,t) ¼ �1

2
�
k

[(yk � �)2wk � logwk]: (3:38)

By differentiating (3.38) with respect to � and setting to 0, we find that, for fixed

t, the conditional maximum likelihood estimator of � is

�̂�(t) ¼�
k

ykwk=�
k

wk, (3:39)

with variance 1=�kwk (this is also the posterior mean and variance of � when

assuming a uniform prior distribution for �). We can therefore substitute �̂�(t) for
� in (3.38) and obtain the profile log(likelihood) for t as

L(t) ¼ �1

2
�
k

[(yk � �̂�(t))2wk � logwk]: (3:40)

This profile log(likelihood) may be plotted, as in Example 3.13, and maximised

numerically to obtain the maximum likelihood estimate t̂t. This can then be

substituted in (3.39) to obtain the maximum likelihood estimate of �.

3.19 COMPUTATIONAL ISSUES

The Bayesian approach applies probability theory to a model derived from

substantive knowledge and can, in theory, deal with realistically complex

situations – the approach can also be termed ‘full probability modelling’. It

has to be acknowledged, however, that the computations may be difficult,

with the specific problem being to carry out the integrations necessary to obtain

the posterior distributions of quantities of interest in situations where non-

standard prior distributions are used, or where there are additional ‘nuisance
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parameters’ in the model. These problems in integration for many years re-

stricted Bayesian applications to rather simple examples. However, there has

recently been enormous progress in methods for Bayesian computation, gener-

ally exploiting modern computer power to carry out simulations known as

Markov chain Monte Carlo (MCMC) methods (Section 3.19.2).

In this book we shall downplay computational issues and many of our

examples can be handled using simple algebra. In practice it is inevitable that

MCMC methods will be required for many applications, and our later examples

make extensive use of the WinBUGS software (Section 3.19.3).

3.19.1 Monte Carlo methods

Monte Carlo methods are a toolkit of techniques that all have the aim of

evaluating integrals or sums by simulation rather than exact or approximate

algebraic analysis. The basic idea of replacing algebra by simulation can be

illustrated by the simple example given in Example 3.14.

Example 3.14 Coins: AMonte Carlo approach to estimating tail areas of
distributions

Suppose we want to know the probability of getting 8 or more heads when
we toss a fair coin 10 times. An algebraic approach would be to use the
formula for the binomial distribution given in (2.39) to provide the probabil-
ity of 8, 9 or 10 heads, which results in

P(8 or more heads) ¼
10

8

� �
1

2

� �8 1

2

� �2

þ
10

9

� �
1

2

� �9 1

2

� �1

þ
10

10

� �
1

2

� �10 1

2

� �0

¼ 1

210
(45þ 10þ 1)

¼ 56

1024

¼ 0:0547:

An alternative, physical approach would be to repeatedly throw a set of
10 coins and count the proportion of throws where there were 8 or more
heads. Basic probability theory then says that eventually, after sufficient
throws, this proportion will tend to the correct result of 0.0547. This rather
exhausting procedure is best imitated by a simulation approach in which
a computer program generates the throws according to a reliable random
mechanism, say by generating a random number U between 0 and 1,
and declaring a ‘head’ if U � 0:5. The results of 102 such simulated throws
of 10 coins are shown in Figure 3.17(a): there were 4, 1 and 0 occurrences
of 8, 9 and 10 heads respectively, an overall proportion of 5=102 ¼ 0:0490,
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compared to the true probability of 0.0547. Figure 3.17(b) shows the
distribution of 10 240 throws, in which there were 428, 87 and 7 occur-
rences of 8, 9 and 10 heads respectively, instead of the expected counts
of 450, 100, and 10. Overall we would therefore estimate the probability
of 8 or more heads as 522=10 240 ¼ 0:0510. After 10 240 000 simulated
throws this empirical proportion is 0.05476, and can be made as close
as required to the true value 0.0547 by simply running a longer simula-
tion.

102 throws

Number of heads

0.0

0.05

0.10

0.15

0.20

0.25

10240 throws

Number of heads

0.0

0.05

0.10
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True distribution

Number of heads

0 6 10
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2 4 80 6 102 4 80 6 102 4 8

Figure 3.17 (a) Empirical distribution of the number of heads thrown in 102 tosses
of 10 balanced coins, where the results of the tosses are obtained by a computer
simulation. (b) Empirical distribution after 10 240 throws. (c) True distribution based
on the binomial distribution.
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The Monte Carlo method described in Example 3.14 is used extensively in risk

modelling using software which allows sampling from a wide variety of distri-

butions. The simulated quantities can then be passed into a standard spread-

sheet, and the resulting distributions of the outputs of the spreadsheet will

reflect the uncertainty about the inputs. This use of Monte Carlo methods can

also be termed probabilistic sensitivity analysis, and we shall explore this in detail

in the context of cost-effectiveness (Section 9.5).

Monte Carlo methods will be useful for Bayesian analysis provided the distri-

bution of concern is a member of a known family – this distribution may be the

prior (if no data are available) or current posterior. In conjugate Bayesian

analysis it will be possible to derive such a posterior distribution algebraically

as in Section 3.6.2 and hence to use Monte Carlo methods to find tail areas

(although such tail areas may also be directly obtainable in software), or more

usefully to find the distribution of complex functions of one or more unknown

quantities as in the probabilistic sensitivity analysis mentioned above. An

application of these ideas in power calculations is given in Example 6.5.

3.19.2 Markov chain Monte Carlo methods

Non-conjugate distributions or nuisance parameters (Section 3.18) will gener-

ally mean that in more complex Bayesian analysis it will not be possible to

derive the posterior distribution in an algebraic form. Fortunately, Markov

chain Monte Carlo methods have developed as a remarkably effective means

of sampling from the posterior distribution of interest even when the form of

that posterior has no known algebraic form. Only a brief overview of these

methods can be given here: tutorial introductions are provided by Brooks

(1998), Casella and George (1992) and Gilks et al. (1996).

The following form the essential components of MCMC methods:

. Replacing analytic methods by simulation. Suppose we observe some data y from

which we want to make inferences about a parameter � of interest, but the

likelihood p(yj�,c) also features a set of nuisance parameters (Section 3.18) c:
for example, � may be the average treatment effect in a meta-analysis, and c
may be the control and treatment group response rates in the individual

trials. The Bayesian approach is to assess a joint prior distribution p(�,c),
form the joint posterior p(�,cjy) / p(yj�,c)p(�,c), and then integrate

out the nuisance parameters in order to give the marginal posterior of

interest, i.e.

p(�jy) ¼
Z

p(�,cjy)dc:
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In most realistic situations this integral will not be a standard form and some

approximation will be necessary. The idea behind MCMC is that we sample from

the joint posterior p(�,cjy), and save a large number of plausible values for � and
c: we can denote these sampled values as (�(1), c(1)), (�(2),
c(2)), . . . , (�(j), c(j)), . . . . Then any inferences we wish to make about � are

derived from the sampled values �(1), �(2), . . . , �(j), . . . : for example, we use the

sample mean of the �(j) as an estimate of the posterior mean E(�jy). We can also

create a smoothed histogram of all the sampled �(j) in order to estimate the shape

of the posterior distribution p(�jy). Hence we have replaced analytic integration

by empirical summaries of sampled values.

. Sampling from the posterior distribution. There is a wealth of theoretical work

on ways of sampling from a joint posterior distribution that is known to be

proportional to a likelihood � prior, defined as p(yj�,c) p(�,c), where the latter

expression is of known form. These methods focus on producing a Markov

chain, in which the distribution for the next simulated value (�(jþ1), c(jþ1))
depends only on the current (�(j),c(j)). The theory of Markov chains states

that, under broad conditions, the samples will eventually converge into an

‘equilibrium distribution’. A set of algorithms are available that use the

specified form of p(yj�,c)p(�,c) to ensure that the equilibrium distribution is

exactly the posterior of interest: popular techniques include Gibbs sampling

and the Metropolis algorithm, but their details are beyond the scope of this

book.

. Starting the simulation. The Markov chain must be started somewhere, and

initial values are selected for the unknown parameters. In theory the choice of

initial values will have no influence on the eventual samples from the Markov

chain, but in practice convergence will be improved and numerical problems

avoided if reasonable initial values can be chosen.

. Checking convergence. Checking whether a Markov chain, possibly with very

many dimensions, has converged to its equilibrium distribution is not at all

straightforward. Lack of convergence might be diagnosed simply by observing

erratic behaviour of the sampled values, but the mere fact that a chain is

moving along a steady trajectory does not necessarily mean that it is sampling

from the correct posterior distribution: it might be stuck in a particular area due

to the choice of initial values. For this reason it has become generally accepted

that it is best to run multiple chains from a diverse set of initial values, and

formal diagnostics exist to check whether these chains end up, to expected

chance variability, coming from the same equilibrium distribution which is

then assumed to be the posterior of interest. This technique is illustrated in

Example 3.15, although in the remaining examples of this book we do not go

into the details of convergence checking (in fact, our examples are generally

well behaved and convergence is not a vital issue).
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There are a vast number of published MCMC analyses, many of them using

hand-tailored sampling programs. However, the WinBUGS software is widely

used in a variety of applications and is essential for many of the examples in this

book.

3.19.3 WinBUGS

WinBUGS is a piece of software designed to make MCMC analyses fairly straight-

forward. Its advantages include a very flexible language for model specification,

the capacity to automatically work out appropriate sampling methods, built-in

graphics and convergence diagnostics, and a large range of examples and web

presence that covers many different subject areas. It has two main disadvan-

tages. The first is its current role as a ‘stand-alone’ program that is not inte-

grated with a traditional statistical package for data manipulation, exploratory

analyses and so on (although this is improving to some extent with the ability to

call WinBUGS from other statistical packages). Secondly, it assumes that users

are skilled at Bayesian analyses and hence can assess the impact of their chosen

prior and likelihood, adequately check the fit of their model, check convergence

and so on. It is therefore to be used with considerable care. WinBUGS may

be obtained from www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml (see

also Section A.2).

A simple example of the model language was introduced in Example 3.14,

which concerned the simulation repeated tosses of 10 ‘balanced coins’. This was

carried out in WinBUGS using the program:

model{

Y � dbin (0.5, 10)

P8 <- step (Y�7:5)
}

where Y is binomial with probability 0.5 and sample size 10, and P8 is a step

function which will take on the value 1 if Y�7:5 is non-negative, i.e. if Y is 8 or

more, 0 if 7 or less. There are only two connectives: The ‘�’ indicates a

distribution, ‘< �’ indicates a logical identity. Running this simulation for

10 240 and 1024000 iterations, and then taking the empirical mean of P8,

provided the estimated probabilities that Y will be 8 or more.

A more complex example is given in Example 3.15, which also illustrates the

use of graphs to represent a model, and the use of scripts for running WinBUGS

in the background.
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Example 3.15 Drug (continued): Using WinBUGS to implement Markov
chainMonteCarlomethods

In Example 3.10 we used the exact form of the beta-binomial distribution to
obtain the predictive distribution of the number of successes in future
Bernoulli trials, when the current uncertainty about the probability of suc-
cess is expressed as a beta distribution. Here we use this example as a
demonstration of the ability of the WinBUGS software to both carry out
prior-to-posterior analysis and make predictions. In this instance we can
compare the results with the exact results derived in Example 3.10; of
course, the main use for WinBUGS is in carrying out analyses for which no
algebraic solution is possible.

The basic components of the model being considered can be written as

y � Beta[a, b] prior distribution

y � Bin[y,m] sampling distribution

ypred � Bin[y, n] predictive distribution

Pcrit ¼ P(ypred � ncrit) probability of exceeding critical threshold

which is expressed in the WinBUGS language as follows:

# WinBUGS analysis of Beta-Binomial ‘drug’ example

# Model description stored in file ‘drug-model.txt’

model{

theta � dbeta(a,b) # prior distribution

y � dbin(theta,m) # sampling distribution

y.pred � dbin(theta,n) # predictive distribution

P.crit <- step (y.pred- #¼1 if y.pred >¼ ncrit,

ncritþ0.5) # 0 otherwise

}

As mentioned in Section 3.19.3, the step function is used here as an indica-
tor as to whether a quantity is greater than or equal to 0, so that the mean of
P.crit over a large number of iterations will be the estimate of Pcrit.

The model is also expressed graphically in Figure 3.18. The representation
is described in the figure legend but should be fairly self-explanatory. The
important point is that such a directed graph fully describes the joint
distribution of all the unknown quantities, and in fact these graphs, known
as Doodles, can be used by WinBUGS in place of the model syntax above.
The part of WinBUGS that deals with the graphs, called DoodleBUGS, can
interpret the graphs and either generate WinBUGS code or directly run the
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Figure 3.18 Doodle for drug example. The graphical model represents each quan-
tity as a node in directed acyclic graph. Constants are placed in rectangles, random
quantities in ovals. Stochastic dependence is represented by a single arrow, and a
logical function as a double arrow. The resulting structure ismuch like a spreadsheet,
but allowing uncertainty on the dependencies. WinBUGS allows models to be
specified graphically and run directly from the graphical interface.

analysis from the Doodle. Graphical representations can be useful in
explaining complex model structures without the distraction of equations;
we use them in explaining alternative models for historical data (Section
5.4) and for evidence synthesis (Section 8.4 and Example 8.6).

The relevant values for the model are the parameters of the prior distribu-
tion, a ¼ 9:2, b ¼ 13:8; the number of trials carried out so far, m ¼ 20; the
number of successes so far, y ¼ 15; the future number of trials, n ¼ 40;
and the critical value of future successes ncrit ¼ 25. These values could
have been placed in the model description, or alternatively can be written
as a list using the format below. This list could be in a separate file or listed
after the model description.

# data held in file ‘data.txt’

# these values could alternatively have been given in model

description

list(

a ¼ 9.2, # parameters of prior distribution

b ¼ 13.8,

y ¼ 15, # number of successes

m ¼ 20, # number of trials

n ¼ 40, # future number of trials

ncrit ¼ 25) # critical value of future successes
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WinBUGS can automatically generate initial values for the MCMC an-
alysis, but it is better to provide reasonable values in an initial-values list.
As mentioned in Section 3.19.2, the best way to check convergence is to
carry out multiple runs from widely dispersed starting points and check
that, after a suitable ‘burn-in’, they give statistically indistinguishable
chains. This example is simple enough not to require this level of care,
but we illustrate the idea by setting up three initial-value files with starting
points y ¼ 0:1, 0:5, 0:9.

# initial values held in file ’drug-in1.txt’

list(theta¼0.1)

# initial values held in file ’drug-in2.txt’

list(theta¼0.5)

# initial values held in file ’drug-in3.txt’

list(theta¼0.9)

It is possible to run WinBUGS from a ‘point- and-click’ interface, but once
a program is working it is more convenient to use ‘scripts’ to carry out a
simulation in the background. A script is shown below, checking the syntax
of the model, reading in data and multiple initial values, carrying out the
simulation and generating the results shown below.

# Script for running analysis

display(’log’)

check(’c:/winbugs/drug-model.txt’) # check syntax of model

data(’c:/winbugs/drug-dat.txt’) # load data file

compile(3) # generate code for 3 simulations

inits(1, ’c:/winbugs/drug-in1.txt’) # load initial values 1

for theta

inits(2, ’c:/winbugs/drug-in2.txt’) # load initial values 2

for theta

inits(3, ’c:/winbugs’drug-in3.txt’) # load initial values 3

for theta

gen.inits() # generate initial value for y.pred

set(theta) # monitor the true response rate

set(y.pred) # monitor the predicted number of successes

set(P.crit) # monitor whether 25 or more successes occur

update(11000) # perform 11000 simulations
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Figure 3.19 Some results based on 30 000 iterations. Convergence is rapidly
achieved in such a simple model, and so the burn-in of 1000 iterations was hardly
necessary.

gr(theta) # Gelman-Rubin diagnostic for convergence

beg(1001) # Discard first 1000 iterations as burn-in

stats(*) # Calculate summary statistics for all monitored

quantities

density(theta) # Plot distribution of theta

density(y.pred) # Plot distribution of y.pred

The statistics from the MCMC run are as follows:

node mean sd MC error 2.5% median 97.5% start sample

P.crit 0.3273 0.4692 0.002631 0.0 0.0 1.0 1001 30000

theta 0.5633 0.07458 4.292E-4 0.4139 0.5647 0.7051 1001 30000

y.pred 22.52 4.278 0.02356 14.0 23.0 31.0 1001 30000

The exact answers are available from Example 3.10, and reveal that
the posterior distribution has mean 0.563 and standard deviation
0.075, and the beta-binomial predictive distribution has mean 22.51 and
standard deviation 4.31. The probability of observing 25 or more suc-
cesses is 0.329. The MCMC results are within Monte Carlo error of the
true values, and can achieve arbitrary accuracy by running the simulation
for longer.

The flexibility of WinBUGS allows a variety of modelling issues to be dealt

with in a straightforward manner: our examples include inference on complex

functions of parameters (Examples 8.4, 8.7 and 9.3), alternative prior distribu-

tions (Examples 6.10 and 8.1), inference on ranks (Example 7.2), prediction of

effects in new studies (Example 8.1), analysis of sensitivity to alternative likeli-

hood assumptions (Example 8.2), and hierarchical models for both means and

variances (Example 6.10).

Computational issues 111

Chapter 3 An Overview of the Bayesian Approach 17.11.2003 4:24pm page 111



3.20 SCHOOLS OF BAYESIANS

It is important to emphasise that there is no such thing as a single Bayesian

approach, and that many ideological differences exist between researchers. Four

broad levels of increasing ‘purity’ may be identified:

1. The empirical Bayes approach (Section 3.17), in which a prior distribution

is estimated from multiple experiments. Analyses and reporting are in trad-

itional terms, and justification is through improved sampling properties of

procedures.

2. The reference Bayes approach, in which a Bayesian interpretation is given

to conclusions expressed as posterior distributions, but an attempt is made to

use ‘objective’ or ‘reference’ prior distributions. There have been a number of

attempts to use Bayesian methods but with uniform priors, gaining the

intuitive Bayesian interpretation while having essentially the classical

results (see Section 5.5; see also Burton et al., 1998; Gurrin et al., 2000).

For example, Shakespeare et al. (2001) use ‘confidence levels’ calculated

from a normalised likelihood which is essentially a posterior distribution

under a uniform prior – this type of activity has been termed an attempt to

‘make the Bayesian omelette without breaking the Bayesian eggs’.

3. The proper Bayes approach, in which informative prior distributions are

based on available evidence, but conclusions are summarised by posterior

distributions without explicit incorporation of utility functions. Within this

school there may be more or less focus on hypothesis testing using Bayes

factors (Section 3.3): Bayes factor analyses essentially entertain the possibil-

ity of the precise truth of the null hypothesis (or at least values very close to

the null), i.e. either � is extremely close to 0, or we have almost no idea of

regarding �. Except in particular circumstances where such dichotomies may

be feasible (perhaps in genetics), it might be considered more reasonable to

express a ‘smooth’ sceptical prior: ‘in most RCTs, estimation would be more

appropriate than testing’ (Kass and Greenhouse, 1989).

4. The decision-theoretic or ‘full’ Bayes approach, in which explicit utility

functions are used to make decisions based on maximising expected

utility. There has been long and vigorous debate on whether or not to

incorporate an explicit loss function, and the extent to which a health-care

evaluation should lead to an inference about a treatment effect or a decision

as to future policy. Important objections to a decision-theoretic approach

include the lack of a coherent theory for decision-making on behalf of

multiple audiences with different utility functions, the difficulty of obtaining

agreed utility values, and the fact that a strict decision-theoretic view would

lead to future treatments being recommended on the basis of even marginal

expected gains, without any concern as to the level of confidence with which

such a recommendation is made (see Section 6.2 and Chapter 9).
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Our personal leaning, and the focus in this book, is towards the third, proper,

school of Bayesianism.

In spite of this apparent divergence in emphasis, the schools are united in their

belief in the fundamental importance of three concepts that distinguish Bayesian

from conventional methods: coherence of probability statements (Section 3.1),

exchangeability (Section 3.17) and the likelihood principle (Section 4.3).

3.21 A BAYESIAN CHECKLIST

Bayesian methods tend to be inherently more complex than classical analyses,

and thus there is an additional need for quality assurance. However, there are

limited ‘guidelines’ available for reporting Bayesian analyses. Rudimentary

guidance was provided by Lang and Secic (1997), who gave the following

instructions:

1. Report the pre-trial probabilities and specify how they were determined.

2. Report the post-trial probabilities and their probability intervals.

3. Interpret the post-trial probabilities.

Similar advice is given in the Annals of Internal Medicine’s instructions to

authors. The BaSiS (Bayesian Standards in Science) initiative (Section A.2) is

seeking to establish guidelines for reporting.

In this section we present a checklist against which published accounts of

Bayesian assessments of health-care interventions can be compared. We aim to

ensure that an account which adequately contains all the points mentioned

here would have the property that the analysis could be replicated by another

investigator who has access to the full data. These guidelines should be seen as

complementary to the CONSORT (Moher et al., 2001) guidelines, in that they

focus on those aspects crucial to an accountable Bayesian analysis, in addition

to standard paragraphs concerning the intervention, the design and the results.

Our main examples attempt to use this structure, although it sets a high

standard that we admit we do not always reach! In particular, it is often easier

to present the evidence at the same time as the statistical model, particularly

when there has been some iterative model construction. To avoid tedious

repetition, the phrase ‘should be clearly and concisely described’ should be

assumed to apply to each of the components below.

Background

. The Intervention. The intervention to be evaluated with regard to the popula-

tion of interest and so on.

. Aim of study. It is important that a clear distinction is made between desired

inferences on any quantity or quantities of interest, representing the
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parameters to be estimated, and any decisions or recommendations for action

to be made subsequent to the inferences. The former will require a prior

distribution, while the latter will require explicit or implicit consideration of

a loss or utility function.

Methods

. Study design. This is a standard requirement, but when synthesising evidence

particular attention will be necessary to the similarity of studies in order to

justify any assumptions of exchangeability.

. Outcome measure. The true underlying parameters of interest.

. Statistical model. The probabilistic relationship between the parameter(s) of

interest and the observed data, either mathematically, or in such a way as to

allow its mathematical form to be unambiguously obtained by a competent

reader, including any model selection procedure, whether Bayesian or not.

. Prospective Bayesian analysis? It needs to be made clear whether the prior and

any loss function were constructed preceding the data collection, and

whether analysis was carried out during the study.

. Prior distribution. Explicit prior distributions for the parameters of interest

should be given. If ‘informative’, then the derivation of the prior from an

elicitation process or empirical evidence should be detailed. If claimed to be

‘non-informative’, then this claim should be justified. If it is intended to

examine the effect of using different priors on the conclusion of the study,

this should be stated and the alternative priors explicitly given.

. Loss function or demands. An explicit method of deducing scientific conse-

quences is decided prior to the study. This will often be a range of equivalence

(a range of values such that if the parameter of interest lies within it, two

different technologies may be regarded as being of equal effectiveness), or a

loss function whose expected value is to be minimised with respect to the

posterior distribution of the parameter of interest. Any elicitation process from

experts should be described.

. Computation/software. A mathematically competent reader should, if neces-

sary, be able to repeat all the calculations and obtain the required results, and

any mathematical software used to obtain the results should be described. If

MCMC methods are being used the assumption of convergence should be

justified.

Results

. Evidence from study. As much information about the observed data – sample

sizes, measurements taken – as is compatible with brevity and data confiden-

tiality should be given. It is also essential that the likelihood could be recon-

structed, so that subsequent users can establish the contribution from the

study to, say, a meta-analysis.
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Interpretation

. Bayesian interpretation. The posterior distribution should be clearly summar-

ised: in most cases, this should include a presentation of posterior credible

intervals and a graphical presentation of the posterior distribution. If either a

formal or informal loss function has been described, the results should be

expressed in these terms.

There should be a careful distinction between the report as a current

summary for immediate action, in which case a synthesis of all relevant

sources of evidence is appropriate, and the report as a contributor of infor-

mation to a future evidence synthesis.

. Sensitivity analysis. The results of any alternative priors and/or expressions of

the consequences of decisions.

. Comments. These should include an honest appraisal of the strengths and

possible weaknesses of the analysis.

3.22 FURTHER READING

Historical references concerning Bayesian methods include Bayes (1763),

Holland (1962), Fienberg (1992) and Dempster (1998). For general introduc-

tions, see the chapter by Berry and Stangl (1996a) in their textbook (Berry and

Stangl, 1996b) which covers a whole range of modelling issues, including

elicitation, model choice, computation, prediction and decision-making. Non-

technical tutorial articles include Lewis and Wears (1993), Bland and Altman

(1998) and Lilford and Braunholtz (1996), while O’Hagan and Luce (2003)

provide an excellent primer geared towards cost-effectiveness studies. Other

authors emphasise different merits of Bayesian approaches in health-care evalu-

ation: Eddy et al. (1990a) concentrate on the ability to deal with varieties of

outcomes, designs and sources of bias, Breslow (1990) stresses the flexibility with

whichmultiple similar studies can be handled, Etzioni andKadane (1995) discuss

general applications in the health sciences with an emphasis on decision-making,

while Freedman (1996) and Lilford and Braunholtz (1996) concentrate on the

ability to combine ‘objective’ evidence with clinical judgement. Stangl and Berry

(1998) provide a recent review of biomedical applications.

There is a huge methodological statistical literature on general Bayesian

methods, much of it quite mathematical. Cornfield (1969) provides a theoretical

justification of the Bayesian approaches, in terms of ideas such as coherence. A

rather old article (Edwards et al., 1963) is still one of the best technical intro-

ductions to the Bayesian philosophy. Good tutorial introductions are provided

by Lindley (1985) and Barnett (1982), while more recent books, roughly in

order of increasing technical difficulty, include Berry (1996a), Lee (1997),

O’Hagan (1994), Gelman et al. (1995), Carlin and Louis (2000), Berger

(1985) and Bernardo and Smith (1994).
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Recommended references for specific issues include DeGroot (1970) on deci-

sion theory, axiomatic approaches and backwards induction, Bernardo and

Smith (1994) on exchangeability, and Kass and Raftery (1995) on Bayes

factors. On computational issues, Carlin et al. (1993) and Etzioni and Kadane

(1995) discuss a range of methods which may be used (normal approximations,

Laplace approximations and numerical methods including MCMC), Gelman and

Rubin (1996) review MCMC methods in biostatistics, and van Houwelingen

(1997) provides a commentary on the importance of computational methods in

the future of biostatistics.

With regard to hierarchical models Jerome Cornfield (1969, 1976) was an

early proponent of the Bayesian approach to multiplicity (Section 6.8.1), while

Breslow (1990) gives many examples of problems of multiplicity and reviews

the use of empirical Bayes methods for longitudinal data, small-area mapping,

estimation of a large number of relative risks in a case–control study, and

multiple tumour sites in a toxicology experiment. Louis (1991) reviews the

area and provides a detailed case study, while Greenland (2000) provides an

excellent justification.

3.23 KEY POINTS

1. Bayesian methods are founded on the explicit use of judgement, formally

expressed as prior beliefs and possibly loss functions. The analysis can

therefore quite reasonably depend on the context and the audience. How-

ever, if the aim is to convince a wide range of opinion, subjective inputs must

be strongly argued and be subject to sensitivity analysis.

2. Bayes theorem provides a natural means of revising opinions in the light

of new evidence, and the Bayes factor or likelihood ratio provides a scale

on which to assess the weight of evidence for or against specific hypotheses.

3. Bayesian methods are best seen as a transformation from initial to final

opinion, rather than providing a single ‘correct’ inference.

4. Exchangeability is a vital judgement: exchangeable observations justify the

use of parametric models and prior distributions, while exchangeable par-

ameters lead to the use of hierarchical models.

5. Bayesian methods provide a flexible means of making predictions, and this is

helped by MCMC methods.

6. Hierarchical models provide a flexible and widely applicable structure when

wanting to simultaneously analyse multiple sources of evidence.

7. A decision-theoretic approach may be appropriate where the consequences

of a study are considered reasonably predictable, but this is not the emphasis

of this book.

8. Normal approximations can be used in many contexts, particularly when

deriving likelihoods from standard analyses. This will generally entail trans-

formation between different scales of measurement.
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9. Standards for Bayesian reporting have not been established. The most im-

portant aspect is to provide details of each of the prior distributions, its

justification and its influence assessed through sensitivity analysis.

EXERCISES

3.1. Altman (2001) considers the data in Table 3.9, showing the results of

using a scan of the liver to detect abnormalities compared to classification

at autopsy, biopsy or surgical inspection in 344 patients.

(a) Estimate the likelihood ratio for a positive scan.

(b) For the patients in Table 3.9 the prevalence of an abnormal pathology is

0.75. For this population estimate the posterior probability of an abnor-

maldiagnosisafterobservingapositive scan result.What is the estimated

posterior probability for a population in which the prevalence is 0.25?

3.2. Asked prior to a study of a new chemotherapy, an oncologist said that she

would expect 90% of patients to respond, and that she thought it was

unlikely to be less than 80%. (a) Use a ‘method-of-moments’ argument

similar to that of Example 3.3 to summarise the oncologist’s opinions in

terms of a beta distribution, and plot this prior distribution. In 20 patients

treated, 14 respond. (b) Plot the likelihood. (c) Update the beta parameters

in the light of the data observed.

3.3. Show that if y1, . . . , yn are i.i.d. observations from a Poisson distribution

with unknown mean �, and that a gamma prior distribution with param-

eters � and � is specified for �, the corresponding posterior distribution is

also gamma, i.e. conjugate, with parameters �þ�n
i¼1yi and � þ n.

3.4. Based on national statistics for a large number of similar hospitals, a

manager believes that the mean number of patients attending a specialist

clinic each week in his hospital should lie between 12 and 20. (a) Taking

this range as approximately equivalent to a mean �2 standard deviations,

use a ‘method-of-moments’ argument similar to that in Example 3.3 to

summarise the manager’s beliefs using a gamma distribution. The

numbers of patients attending a specialist clinic each week for 5 weeks

are 11, 15, 18, 13, 19, and are assumed to be independent observations

Table 3.9 Detection of abnormal liver pathology using scan compared to actual
classification at autopsy, biopsy or surgical inspection in 344 patients.

Pathology (Truth) Total

Liver scan (Test) Abnormal (þ) Normal (�)

Abnormal (þ) 231 32 263
Normal (�) 27 54 81

Total 258 86 344
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3.5. from a Poisson distribution. (b) Obtain the posterior distribution for the

mean number of patients per week based on the manager’s prior beliefs.

(c) Plot the prior and posterior densities. If your software permits it,

calculate the prior and posterior probabilities that the mean is greater

than 18.

3.5. Verify (3.14) algebraically, i.e. that a normal prior distribution is conju-

gate for the unknown mean of a normal likelihood.

3.6. Consider the GREAT trial of home thrombolytic therapy described in

Example 3.6. Another cardiologist was more sceptical about the magni-

tude of benefit and thought that the relative reduction in odds of death

was more likely to be around 10–15%, and that the extremes of a 25%

relative reduction and a 2.5% increase were unlikely.

(a) Fit a normal prior distribution for the log(odds ratio) to these opinions.

(b) Obtain the posterior distribution for this cardiologist and compare it

with the posterior distributions in Example 3.6.

3.7. Using the normal approximation to the likelihood derived in Exercise 2.5,

assume a sceptical prior distribution, such that an odds ratio of 1 was

most likely but with a 95% interval from 0.5 to 2.0. Obtain the posterior

estimate for the log(odds ratio), odds ratio and associated 95% intervals.

3.8. Use the normal approximation to the likelihood derived in Exercise 2.8

and assume a sceptical prior distribution equivalent to the evidence in a

balanced trial in which 50 events have occurred on each arm. Obtain the

corresponding posterior distribution for the log(hazard ratio).

3.9. Using the methods of Section 3.11, consider the results seen in the

PROSPER RCT in Exercise 2.8.

(a) Find the sceptical prior distribution for the log(hazard ratio) with

mean 0, such that the resulting posterior 95% interval for the hazard

ratio just includes 1.

(b) Do you think this degree of scepticism is reasonable, and hence are

the trial results credible?

3.10. Baum et al. (1992) report the results of an RCT to investigate the use of

tamoxifen compared to standard care for women treated for breast

cancer, evaluated in terms of disease-free survival. In total, 2030

women were randomised and followed up for over 10 years. Overall,

there were 484 events in the tamoxifen arm, whilst 419.6 were expected.

(a) Assuming balanced randomisation and follow-up, estimate the

number of events in the standard-care arm. During the first 5 years of

the trial 387 events were observed compared to 320.2 expected, and in

the second period of the trial 97 events were observed whilst 99.4 were

expected. (b) Assuming a sceptical prior for the log(hazard ratio) centred

at zero and with precision equivalent to having observed only 10 events,

show that a sequential analysis of the accumulating trial data using the

methods of Section 3.12 gives similar results to an analysis using all the

trial data.
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3.11. In Exercise 2.7 consider another 100 patients randomised between HAI

and control.

(a) About how many deaths would we expect to observe?

(b) What would be the predictive distribution for the observed log(hazard

ratio) using a sceptical prior distribution, i.e. centred at zero and

equivalent to having observed 10 deaths?

(c) Repeat (b) for an optimistic prior that represented beliefs that there

would be a 10% relative reduction in the risk of death associated with

HAI with uncertainty equivalent to having observed 25 deaths.

3.12. Whitehead (2002) considers a meta-analysis of 9 RCTs to evaluate

whether taking diuretics during pregnancy reduces the risk of pre-

eclampsia and which is summarised in Table 3.10. For each study, (a)

estimate the log(odds ratio) and its variance, and (b) obtain an estimate

and 95% intervals for the pooled odds ratio. (c) Using the ‘method of

moments’ (3.37), estimate the between-study variance t2. Hence obtain

the posterior estimates and intervals for (d) the population odds ratio

using random effects assuming the between-study variance is known,

and (e) the odds ratios for each of the 13 studies assuming a random-

effects model.

3.13. Cooper et al. (2002) report the results of an economic decision model to

assess the cost-effectiveness of using prophylactic antibiotics in women

undergoing Caesarean section. Evidence available includes the results of

a Cochrane systematic review of 61 RCTs which evaluated the prophy-

lactic use of antibiotics in women undergoing Caesarean section to

prevent wound infection, which produces an estimated odds ratio of

0.40, where the baseline probability of wound infection without prophy-

lactic use of antibiotics is estimated to be 0.08. Antibiotic treatment is

assumed to cost £10. Women who have a Caesarean section and who do

not develop an infection have a mean total cost of £1159 and are

Table 3.10 RCTs evaluating the use of diuretics during pregnancy to reduce risk of
pre-eclampsia.

Study Diuretic Control

Cases Total Cases Total

1 14 131 14 136
2 21 385 17 134
3 14 57 24 48
4 6 38 18 40
5 12 1011 35 760
6 138 1370 175 1336
7 15 506 20 524
8 6 108 2 103
9 65 153 40 102
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3.14. assumed to have a utility in the subsequent year of 0.95 quality-adjusted

life-years (QALYs), while women who have a Caesarean section and who

develop an infection have mean total cost of £2320 and utility of 0.80

QALYs: it is assumed there is no difference between the groups after one

year.

(a) Structure the decision as in Figure 3.12.

(b) Using the methods of Section 3.14, find the threshold for a policy

decision-maker, in £ per QALY, at which the expected utility of using

prophylactic antibiotics would exceed that of not using prophylactic

antibiotics.

3.14. Use WinBUGS to repeat the analysis of the PROSPER RCT in Exercise 2.9,

assuming a uniform prior (on a suitable wide range) for the log(odds

ratio), and (a) the approximate normal likelihood, (b) exact binomial

likelihoods.

3.15. Use WinBUGS to repeat the analysis in Exercise 3.4 of patients attending

a specialist clinic.
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